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Abstract

This thesis presents a system for specifying constraints on dynamically changing ref-
erencing relationships of heap objects, and an analysis for static verification of these
constraints. The constraint specification system is based on the concept of role. The
role of an object depends, in large part, on its aliasing relationships with other ob-
jects, with the role of each object changing as its aliasing relationships change. In
this way roles capture object and data structure properties such as unique references,
membership of objects in data structures, disjointness of data structures, absence of
representation exposure, bidirectional associations, treeness, and absence or presence
of cycles in the heap.

Roles generalize linear types by allowing multiple aliases of heap objects that
participate in recursive data structures. Unlike graph grammars and graph types,
roles contain sufficiently general constraints to conservatively approximate any data
structure.

We give a semantics for mutually recursive role definitions and derive properties
of roles as an invariant specification language. We introduce a programming model
that allows temporary violations of role constraints. We describe a static role analysis
for verifying that a program conforms to the programming model. The analysis uses
fixpoint computation to synthesize loop invariants in each procedure.

We introduce a procedure interface specification language and its semantics. We
present an interprocedural, compositional, and context-sensitive role analysis that
verifies that a program respects the role constraints across procedure calls.

Thesis Supervisor: Martin C. Rinard
Title: Associate Professor
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Chapter 1

Introduction

Types capture important properties of the objects that programs manipulate, increas-
ing both the safety and readability of the program. Traditional type systems capture
properties (such as the format of data items stored in the fields of the object) that
are invariant over the lifetime of the object. But in many cases, properties that do
change are as important as properties that do not. Recognizing the benefit of captur-
ing these changes, researchers have developed systems in which the type of the object
changes as the values stored in its fields change or as the program invokes operations
on the object [84, 83, 20, 91, 92, 11, 40, 26]. These systems integrate the concept of
changing object states into the type system.

The fundamental idea in this work is that the state of each object also depends
on the data structures in which it participates. Our type system therefore captures
the referencing relationships that determine this data structure participation. As
objects move between data structures, their types change to reflect their changing
relationships with other objects. Our system uses roles to formalize the concept of
a type that depends on the referencing relationships. Each role declaration provides
complete aliasing information for each object that plays that role—in addition to
specifying roles for the fields of the object, the role declaration also identifies the
complete set of references in the heap that refer to the object. In this way roles
generalize linear type systems [87, 6, 56] by allowing multiple aliases to be statically
tracked, and extend alias types [82, 88] with the ability to specify roles of objects
that are the source of aliases.

This approach attacks a key difficulty associated with state-based type systems:
the need to ensure that any state change performed using one alias is correctly re-
flected in the declared types of the other aliases. Because each object’s role identifies
all of its heap aliases, the analysis can verify the correctness of the role informa-
tion at all remaining or new heap aliases after an operation changes the referencing
relationships.

Roles capture important object and data structure properties, improving both the
safety and transparency of the program. For example, roles allow the programmer to
express data structure consistency properties (with the properties verified by the role
analysis), to improve the precision of procedure interface specifications (by allowing
the programmer to specify the role of each parameter), to express precise referenc-
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null
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Figure 1-1: Role Reference Diagram for a Scheduler

ing and interaction behaviors between objects (by specifying verified roles for object
fields and aliases), and to express constraints on the coordinated movements of ob-
jects between data structures (by using the aliasing information in role definitions to
identify legal data structure membership combinations). Roles may also aid program
optimization by providing precise aliasing information.

1.1 Overview of Roles

Figure 1-1 presents a role reference diagram for a process scheduler. Each box in the
diagram denotes a disjoint set of objects of a given role. The labelled arrows between
boxes indicate possible references between the objects in each set. As the diagram
indicates, the scheduler maintains a list of live processes. A live process can be either
running or sleeping. The running processes form a doubly-linked list, while sleeping
processes form a binary tree. Both kinds of processes have proc references from the
live list nodes LiveList. Header objects RunningHeader and SleepingTree simplify
operations on the data structures that store the process objects.

As Figure 1-1 shows, data structure participation determines the conceptual state
of each object. In our example, processes that participate in the sleeping process tree
data structure are classified as sleeping processes, while processes that participate in
the running process list data structure are classified as running processes. Moreover,
movements between data structures correspond to conceptual state changes—when a
process stops sleeping and starts running, it moves from the sleeping process tree to
the running process list.

12
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1.1.1 Role Definitions

Figure 1-2 presents the role definitions for the objects in our example.1 Each role
definition specifies the constraints that an object must satisfy to play the role. Field
constraints specify the roles of the objects to which the fields refer, while slot con-
straints identify the number and kind of aliases of the object.

Role definitions may also contain two additional kinds of constraints: identity
constraints, which specify paths that lead back to the object, and acyclicity con-
straints, which specify paths with no cycles. In our example, the identity constraint
next.prev in the RunningProc role specifies the cyclic doubly-linked list constraint
that following the next, then prev fields always leads back to the initial object. The
acyclic constraint left, right in the SleepingProc role specifies that there are no
cycles in the heap involving only left and right edges. On the other hand, the list
of running processes must be cyclic because its nodes can never point to null.

The slot constraints specify the complete set of heap aliases for the object. In our
example, this implies that no process can be simultaneously running and sleeping.

In general, roles can capture data structure consistency properties such as dis-
jointness and can prevent representation exposure [14, 22]. As a data structure de-
scription language, roles can naturally specify trees with additional pointers. Roles
can also approximate non-tree data structures like sparse matrices. Because most
role constraints are local, it is possible to inductively infer them from data structure
instances.

1.1.2 Roles and Procedure Interfaces

Procedures specify the initial and final roles of their parameters. The suspend

procedure in Figure 1-3, for example, takes two parameters: an object with role
RunningProc p, and the SleepingTree s. The procedure changes the role of the ob-
ject referenced by p to SleepingProc whereas the object referenced by s retains
its original role. To perform the role change, the procedure removes p from its
RunningList data structure and inserts it into the SleepingTree data structure
s. If the procedure fails to perform the insertions or deletions correctly, for instance
by leaving an object in both structures, the role analysis will report an error.

1.2 Contributions

This thesis makes the following contributions:

• Role Concept: The concept that the state of an object depends on its refer-
encing relationships; specifically, that objects with different heap aliases should
be regarded as having different states.

1In general, each role definition would specify the static class of objects that can play that role.
To simplify the presentation, we assume that all objects are instances of a single class with a set of
fields F .

13
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role LiveHeader {

fields next : LiveList | null;

}

role LiveList {

fields next : LiveList | null,

proc : RunningProc | SleepingProc;

slots LiveList.next | LiveHeader.next;

acyclic next;

}

role RunningHeader {

fields next : RunningProc | RunningHeader,

prev : RunningProc | RunningHeader;

slots RunningHeader.next | RunningProc.next,

RunningHeader.prev | RunningProc.prev;

identities next.prev, prev.next;

}

role RunningProc {

fields next : RunningProc | RunningHeader,

prev : RunningProc | RunningHeader;

slots RunningHeader.next | RunningProc.next,

RunningHeader.prev | RunningProc.prev,

LiveList.proc;

identities next.prev, prev.next;

}

role SleepingTree {

fields root : SleepingProc | null,

acyclic left, right;

}

role SleepingProc {

fields left : SleepingProc | null,

right : SleepingProc | null;

slots SleepingProc.left | SleepingProc.right |

SleepingTree.root;

LiveList.proc;

acyclic left, right;

}

role DeadProc { }

Figure 1-2: Role Definitions for a Scheduler

14
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procedure suspend(p : RunningProc ->> SleepingProc,

s : SleepingTree)

local pp, pn, r;

{

pp = p.prev; pn = p.next;

r = s.root;

p.prev = null; p.next = null;

pp.next = pn; pn.prev = pp;

s.root = p; p.left = r;

setRole(p : SleepingProc);

}

Figure 1-3: Suspend Procedure

• Role Semantics and its Consequences: It presents a semantics of a lan-
guage for defining roles. The programmer can use this language to express
data structure invariants and properties such as participation of objects in data
structures. We show how roles can be used to control the aliasing of objects, and
express reachability properties. We show certain decidability and undecidability
results for roles.

• Programming Model: It presents a set of role consistency rules. These
rules give a programming model for changing the role of an object and the
circumstances under which roles can be temporarily violated.

• Procedure Interface Specification Language: It presents a language for
specifying the initial context and effects of each procedure. The effects summa-
rize the actions of the procedure in terms of the references it changes and the
regions of the heap that it affects.

• Role Analysis Algorithm: It presents an algorithm for verifying that the
program respects the constraints given by a set of role definitions and procedure
specifications. The algorithm uses a data-flow analysis to infer intermediate
referencing relationships between objects, allowing the programmer to focus
on role changes and procedure interfaces. The analysis can verify acyclicity
constraints even if they are temporarily violated. The interprocedural analysis
verifies read effects as well as “may” and “must” write effects by maintaining
a fine grained mapping between the current heap and the initial context of the
procedure.

1.3 Outline of the Thesis

The rest of the thesis is organized as follows.
In Chapter 2 we introduce the representation of program heap (2.1.1) and the

representation of role constraints introduced by the role definitions (2.1.2). We for-
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mally define the semantics of roles by giving a criterion for a heap to satisfy the role
constraints (2.1.3). We then highlight some application level properties that can be
specified using roles (2.2) and give examples of using roles to describe data structures.
We give a list of properties (2.3) that show how roles help control aliasing while giv-
ing more flexibility than linear type systems. We show how to deduce reachability
properties from role constraints and give a criterion for a set of roles to define a
tree. A more detailed study of the constraints expressible using roles is delegated to
Appendix A, where we prove decidability of the satisfiability problem for a class of
role constraints (A.1.4), and undecidability of the model inclusion for role definitions
(A.2).

In Chapter 3 we introduce a programming model that enables role definitions to
be integrated with the program. We introduce a core programming language with
procedures (3.1) and give its operational semantics (3.2). Next we introduce the
notion of onstage and offstage nodes (3.3) which defines the criterion for temporary
violations of role constraints by generalizing heap consistency from (2.1.3). As part
of the programming model we introduce restrictions on programs that simplify later
analysis and ensure role consistency across procedure calls (3.4). We give the pre-
conditions for transitions of the operational semantics that formalize role consistency.
We then introduce an instrumented semantics that gives the programmer complete
control over the assignment of roles to objects (3.5). This completes the description
of the programming model, which is verified by the role analysis.

We present the intraprocedural role analysis in Chapter 4. We define the abstract
representation of concrete heaps called role graphs and specify the abstraction relation
(4.1). We then define transfer functions for the role analysis (4.2). This includes the
expansion relation (4.2.1) used to instantiate nodes from offstage to onstage using
instantiation (4.2.1) and split (4.2.1). We model the movement of nodes offstage using
the contraction relation (4.2.2). We also describe the checks that the role analysis
performs on role graphs to ensure that the program respects the programming model
(4.2.3, 4.2.4).

In Chapter 5 we generalize the role analysis to the interprocedural case. We
first introduce procedure interface specification language (5.1) that describes initial
context (5.1.1) and effects (5.1.2) of each procedure. We give examples of proce-
dure interfaces and define the semantics of initial contexts (5.1.1) and effects (5.1.3).
The interprocedural analysis extends the intraprocedural analysis from Chapter 4 by
verifying that each procedure respects its specification (5.2) and by instantiating pro-
cedure specifications to analyze call sites (5.3). The verification of transfer relations
uses a fine grained mapping between nodes of the role graph at each program point
and nodes of the initial context. The analysis of call sites needs to establish the map-
ping between the current role graphs and callee’s initial context (5.3.1), instantiate
callee’s effects (5.3.2) and then reconstruct the roles of modified non-parameter nodes
(5.3.3).

In Chapter 6 we present the extensions of the basic role framework described in
previous chapters. These extensions allow a statically unbounded number of heap
references to objects (6.1), roles defined by references from local variables, non-
incremental changes to the role assignment (6.4), and roles for specifying partial
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information about object’s fields and aliases (6.5). The last section also outlines a
subtyping criterion for partial roles.

In Chapter 7 we compare our work to the previous typestate systems, the propos-
als to control the aliasing in object oriented programming and the term roles as used
in object modeling and database community. We compare our role analysis with pro-
gram verification and analysis techniques for dynamically allocated data structures.
Chapter 8 concludes the thesis.

17



www.manaraa.com

18



www.manaraa.com

Chapter 2

Roles as a Constraint Specification
Language

In this chapter we introduce the formal semantics of roles. We then show how to use
roles to specify properties of objects and data structures.

2.1 Abstract Syntax and Semantics of Roles

In this section, we precisely define what it means for a given heap to satisfy a set of
role definitions. In subsequent sections we will use this definition as a starting point
for a programming model and role analysis.

2.1.1 Heap Representation

We represent a concrete program heap as a finite directed graph Hc with nodes(Hc)
representing objects of the heap and labelled edges representing heap references. A
graph edge 〈o1, f, o2〉 ∈ Hc denotes a reference with field name f from object o1 to
object o2. To simplify the presentation, we fix a global set of fields F and assume
that all objects have the set of fields F .

2.1.2 Role Representation

Let R denote the set of roles used in role definitions, nullR be a special symbol always
denoting a null object nullc, and let R0 = R ∪ {nullR}. We represent each role as the
conjunction of the following four kinds of constraints:

• Fields: For every field name f ∈ F we introduce a function fieldf : R → 2R0

denoting the set of roles that objects of role r ∈ R can reference through field
f . A field f of role r can be null if and only if nullR ∈ fieldf (r). The explicit
use of nullR and the possibility to specify a set of alternative roles for every field
allows roles to express both may and must referencing relationships.
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• Slots: Every role r has slotno(r) slots. A slot slotk(r) of role r ∈ R is a subset
of R × F . Let o be an object of role r and o′ an object of role r′. A reference
〈o′, f, o〉 ∈ Hc can fill a slot k of object o if and only if 〈r′, f〉 ∈ slotk(r). An
object with role r must have each of its slots filled by exactly one reference.

• Identities: Every role r ∈ R has a set of identities(r) ⊆ F × F . Identities
are pairs of fields 〈f, g〉 such that following reference f on object o and then
returning on reference g leads back to o.

• Acyclicities: Every role r ∈ R has a set acyclic(r) ⊆ F of fields along which
cycles are forbidden.

2.1.3 Role Semantics

We define the semantics of roles as a conjunction of invariants associated with role
definitions. A concrete role assignment is a map ρc : nodes(Hc) → R0 such that
ρc(nullc) = nullR.

Definition 1 Given a set of role definitions, we say that heap Hc is role consistent iff
there exists a role assignment ρc : nodes(Hc) → R0 such that for every o ∈ nodes(Hc)
the predicate locallyConsistent(o,Hc, ρc) is satisfied. We call any such role assignment
ρc a valid role assignment.

The predicate locallyConsistent(o,Hc, ρc) formalizes the constraints associated with
role definitions.

Definition 2 locallyConsistent(o,Hc, ρc) iff all of the following conditions are met.
Let r = ρc(o).

1) For every field f ∈ F and 〈o, f, o′〉 ∈ Hc, ρc(o
′) ∈ fieldf (r).

2) Let {〈o1, f1〉, . . . , 〈ok, fk〉} = {〈o′, f〉 | 〈o′, f, o〉 ∈ Hc} be the set of all aliases
of node o. Then k = slotno(r) and there exists some permutation p of the set
{1, . . . , k} such that 〈ρc(oi), fi〉 ∈ slotpi

(r) for all i.

3) If 〈o, f, o′〉 ∈ Hc, 〈o′, g, o′′〉 ∈ Hc, and
〈f, g〉 ∈ identities(r), then o = o′′.

4) It is not the case that graph Hc contains a cycle
o1, f1, . . . , os, fs, o1 where o1 = o and
f1, . . . , fs ∈ acyclic(r)

Note that a role consistent heap may have multiple valid role assignments ρc. However,
in each of these role assignments, every object o is assigned exactly one role ρc(o).
The existence of a role assignment ρc with the property ρc(o1) 6= ρc(o2) thus implies
o1 6= o2. This is just one of the ways in which roles make aliasing more predictable.

20



www.manaraa.com

2.2 Using Roles

Roles capture important properties of the objects and provide useful information
about how the actions of the program affect those properties.

• Consistency Properties: Roles can ensure that the program respects appli-
cation - level data structure consistency properties. The roles in our process
scheduler, for example, ensure that a process cannot be simultaneously sleeping
and running.

• Interface Changes: In many cases, the interface of an object changes as its
referencing relationships change. In our process scheduler, for example, only
running processes can be suspended. Because procedures declare the roles of
their parameters, the role system can ensure that the program uses objects
correctly even as the object’s interface changes.

• Multiple Uses: Code factoring minimizes code duplication by producing
general-purpose classes (such as the Java Vector and Hashtable classes) that
can be used in a variety of contexts. But this practice obscures the different
purposes that different instances of these classes serve in the computation. Be-
cause each instance’s purpose is usually reflected in its relationships with other
objects, roles can often recapture these distinctions.

• Correlated Relationships: In many cases, groups of objects cooperate to
implement a piece of functionality. Standard type declarations provide some
information about these collaborations by identifying the points-to relationships
between related objects at the granularity of classes. But roles can capture a
much more precise notion of cooperation, because they track correlated state
changes of related objects.

Programmers can use roles for specifying the membership of objects in data struc-
tures and the structural invariants of data structures. In both cases, the slot con-
straints are essential.

When used to describe membership of an object in a data structure, slots specify
the source of the alias from a data structure node that stores the object. By assigning
different sets of roles to data structures used at different program points, it is possible
to distinguish nodes stored in different data structure instances. As an object moves
between data structures, the role of the object changes appropriately to reflect the
new source of the alias.

When describing nodes of data structures, slot constraints specify the aliasing
constraints of nodes; this is enough to precisely describe a variety of data structures
and approximate many others. Property 16 below shows how to identify trees in role
definitions even if tree nodes have additional aliases from other sets of nodes. It is
also possible to define nodes which make up a compound data structure linked via
disjoint sets of fields, such as threaded trees, sparse matrices and skip lists.
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Figure 2-1: Roles of Nodes of a Sparse Matrix

Example 3 The following role definitions specify a sparse matrix of width and height
at least 3. These definitions can be easily constructed from a sketch of a sparse matrix
in Figure 2-1.

role A1 {

fields x : A2, y : A4;

acyclic x, y;

}

role A2 {

fields x : A2 | A3, y : A5;

slots A1.x | A2.x;

acyclic x, y;

}

role A3 {

fields y : A6;

slots A2.x;

acyclic x, y;

}

role A4 {

fields x : A5, y : A4 | A7;

slots A1.y | A4.y;

acyclic x, y;

}

role A5 {

fields x : A5 | A6, y : A5 | A8;

slots A4.x | A5.x, A2.y | A5.y;

acyclic x, y;
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Figure 2-2: Sketch of a Two-Level Skip List

}

role A6 {

fields y : A6 | A9;

slots A5.x, A3.y | A6.y;

acyclic x, y;

}

role A7 {

fields x : A8;

slots A4.y;

acyclic x, y;

}

role A8 {

fields x : A8 | A9;

slots A7.x | A8.x, A5.y;

acyclic x, y;

}

role A9 {

slots A8.x, A6.y;

acyclic x, y;

}

4

Example 4 We next give role definitions for a two-level skip list [69] sketched in
Figure 2-2.

role SkipList {

fields one : OneNode | TwoNode | null;

two : TwoNode | null;

}

role OneNode {

fields one : OneNode | TwoNode | null;

two : null;

slots OneNode.one | TwoNode.one | SkipList.one;

acyclic one, two;

}
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role TwoNode {

fields one : OneNode | TwoNode | null;

two : TwoNode | null;

slots OneNode.one | TwoNode.one | SkipList.one,

TwoNode.two | SkipList.two;

acyclic one, two;

}

4

2.3 Some Simple Properties of Roles

In this section we identify some of the invariants expressible using sets of mutually
recursive role definitions. Some further properties of roles are given in Appendix A.

The following properties show some of the ways role specifications make object
aliasing more predictable. They are an immediate consequence of the semantics of
roles.

Property 5 (Role Disjointness)
If there exists a valid role assignment ρc for Hc such that ρ(o1) 6= ρ(o2), then o1 6= o2.

The previous property gives a simple criterion for showing that objects o1 and o2 are
unaliased: find a valid role assignment which assigns different roles to o1 and o2. This
use of roles generalizes the use of static types for pointer analysis [24]. Since roles
create a finer partition of objects than a typical static type system, their potential
for proving absence of aliasing is even larger.

Property 6 (Disjointness Propagation)
If 〈o1, f, o2〉, 〈o3, g, o4〉 ∈ Hc, o1 6= o3, and there exists a valid role assignment ρc for
Hc such that ρc(o2) = ρc(o4) = r but fieldf (r) ∩ fieldg(r) = ∅, then o2 6= o4.

Property 7 (Generalized Uniqueness)
If 〈o1, f, o2〉, 〈o3, g, o4〉 ∈ Hc, o1 6= o3, and there exists a role assignment ρc such that
ρc(o2) = ρc(o4) = r, but there are no indices i 6= j such that 〈ρc(o1), f〉 ∈ sloti(r) and
〈ρc(o2), g〉 ∈ slotj(r) then o2 6= o4.

A special case of Property 7 occurs when slotno(r) = 1; this constrains all references
to objects of role r to be unique.

Role definitions induce a role reference diagram RRD which captures some, but
not all, role constraints.

Definition 8 (Role Reference Diagram)
Given a set of definitions of roles R, a role reference diagram RRD is is a directed
graph with nodes R0 and labelled edges defined by

RRD = {〈r, f, r′〉 | r′ ∈ fieldf (r) and ∃i 〈r, f〉 ∈ sloti(r
′)}

∪ {〈r, f, nullR〉 | nullR ∈ fieldf (r)}
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Each role reference diagram is a refinement of the corresponding class diagram in a
statically typed language, because it partitions classes into multiple roles according
to their referencing relationships. The sets ρ−1

c (r) of objects with role r change during
program execution, reflecting the changing referencing relationships of objects.

Role definitions give more information than a role reference diagram. Slot con-
straints specify not only that objects of role r1 can reference objects of role r2 along
field f , but also give cardinalities on the number of references from other objects.
In addition, role definitions include identity and acyclicity constraints, which are not
present in role reference diagrams.

Property 9 Let ρc be any valid role assignment. Define

G = {〈ρc(o1), f, ρc(o2)〉 | 〈o1, f, o2〉 ∈ Hc}

Then G is a subgraph of RRD.

It follows from Property 9 that roles give an approximation of may-reachability among
heap objects.

Property 10 (May Reachability)
If there is a valid role assignment ρc : nodes(Hc) → R0 such that ρc(o1) 6= ρc(o2) where
o1, o2 ∈ nodes(Hc) and there is no path from ρc(o1) to ρc(o2) in the role reference
diagram RRD, then there is no path from o1 to o2 in Hc.

The next property shows the advantage of explicitly specifying null references in
role definitions. While the ability to specify acyclicity is provided by the acyclic

constraint, it is also possible to indirectly specify must-cyclicity.

Property 11 (Must Cyclicity)
Let F0 ⊆ F and RCYC ⊆ R be a set of nodes in the role reference diagram RRD such
that for every node r ∈ RCYC, if 〈r, f, r′〉 ∈ RRD then r′ ∈ RCYC. If ρc is a valid role
assignment for Hc, then every object o1 ∈ Hc with ρc(o1) ∈ RCYC is a member of a
cycle in Hc with edges from F0.

The following property shows that roles can specify a form of must-reachability among
the sets of objects with the same role.

Property 12 (Downstream Path Termination)
Assume that for some set of fields F0 ⊆ F there are sets of nodes RINTER ⊆ R,

RFINAL ⊆ R0 of the role reference diagram RRD such that for every node r ∈ RINTER:

1. F0 ⊆ acyclic(r)

2. if 〈r, f, r′〉 ∈ RRD for f ∈ F0, then r′ ∈ RINTER ∪RFINAL

Let ρc be a valid role assignment for Hc. Then every path in Hc starting from an
object o1 with role ρc(o1) ∈ RINTER and containing only edges labelled with F0 is a
prefix of a path that terminates at some object o2 with ρc(o2) ∈ RFINAL.
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Property 13 (Upstream Path Termination)
Assume that for some set of fields F0 ⊆ F there are sets of nodes RINTER ⊆ R,

RINIT ⊆ R0 of the role reference diagram RRD such that for every node r ∈ RINTER:

1. F0 ⊆ acyclic(r)

2. if 〈r′, f, r〉 ∈ RRD for f ∈ F0, then r′ ∈ RINTER ∪RINIT

Let ρc be a valid role assignment for Hc. Then every path in Hc terminating at an
object o2 with ρc(o2) ∈ RINTER and containing only edges labelled with F0 is a suffix of
a path which started at some object o1, where ρc(o1) ∈ RINIT.

We next describe the conditions that guarantee the existence at least one path in the
heap, rather than stating the properties of all paths as in Properties 12 and 13.

Property 14 (Downstream Must Reachability)
Assume that for some set of fields F0 ⊆ F there are sets of roles RINTER ⊆ R,

RFINAL ⊂ R0 of the role reference diagram RRD such that for every node r ∈ RINTER:

1. F0 ⊆ acyclic(r)

2. there exists f ∈ F0 such that fieldf (r) ⊆ RINTER ∪RFINAL

Let ρc be a valid role assignment for Hc. Then for every object o1 with ρc(o1) ∈ RINTER

there is a path in Hc with edges from F0 from o1 to some object o2 where ρc(o2) ∈ RFINAL.

Property 15 (Upstream Must Reachability)
Assume that for some set of fields F0 ⊆ F there are sets of nodes RINTER ⊆ R,

RINIT ⊆ R of the role reference diagram RRD such that for every node r ∈ RINTER:

1. F0 ⊆ acyclic(r)

2. there exists k such that slotk(r) ⊆ (RINTER ∪RINIT)× F

Let ρc be a valid role assignment for Hc. Then for every object o2 with ρc(o2) ∈ RINTER

there is a path in Hc from some object o1 with ρc(o1) ∈ RINIT to the object o2.

Trees are a class of data structures especially suited for static analysis. Roles can
express graphs that are not trees, but it is useful to identify trees as certain sets of
mutually recursive role definitions.

Property 16 (Treeness)
Let RTREE ⊆ R be a set of roles and F0 ⊆ F set of fields such that for every r ∈ RTREE

1. F0 ⊆ acyclic(r)

2. |{i | sloti(r) ∩ (RTREE × F0) 6= ∅}| ≤ 1

Let ρc be a valid role assignment for Hc and

S ⊆ {〈n1, f, n2〉 | 〈n1, f, n2〉 ∈ Hc, ρ(n1), ρ(n2) ∈ RTREE, f ∈ F0}

Then S is a set of trees.
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Chapter 3

A Programming Model

In this chapter we define what it means for an execution of a program to respect the
role constraints. This definition is complicated by the need to allow the program to
temporarily violate the role constraints during data structure manipulations. Our
approach is to let the program violate the constraints for objects referenced by local
variables or parameters, but require all other objects to satisfy the constraints.

We first present a simple imperative language with dynamic object allocation and
give its operational semantics. We then specify additional statement preconditions
that enforce the role consistency requirements.

3.1 A Simple Imperative Language

Our core language contains, as basic statements, Load (x=y.f), Store (x.f=y), Copy
(x=y), and New (x=new). All variables are references to objects in the global heap
and all assignments are reference assignments. We use an elementary test statement
combined with nondeterministic choice and iteration to express if and while state-
ment, using the usual translation [44, 5] given in Figure 3-1. We represent the control
flow of programs using control-flow graphs.

A program is a collection of procedures proc ∈ Proc. Procedures change the
global heap but do not return values. Every procedure proc has a list of parame-
ters param(proc) = {parami(proc)}i and a list of local variables local(proc). We use
var(proc) to denote param(proc)∪ local(proc). A procedure definition specifies the ini-
tial role preRk(proc) and the final role postRk(proc) for every parameter paramk(proc).
We use procj for indices j ∈ N to denote activation records of procedure proc. We fur-
ther assume that there are no modifications of parameter variables so every parameter
references the same object throughout the lifetime of procedure activation.

if t stat1 stat2 ≡ (test(t); stat1)|(test(!t); stat2)
while t stat ≡ (test(t); stat)*; test(!t)

Figure 3-1: Syntactic Sugar for if and while
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Example 17 The following kill procedure removes a process from both the doubly
linked list of running processes and the list of all active processes. This is indicated
by the transition from RunningProc to DeadProc.

procedure kill(p : RunningProc ->> DeadProc,

l : LiveHeader)

local prev, current, cp, nxt, lp, ln;

{

// find ’p’ in ’l’

prev = l; current = l.next;

cp = current.proc;

while (cp != p) {

prev = current;

current = current.next;

cp = current.proc;

}

// remove ’current’ and ’p’ from active list

nxt = current.next;

prev.next = nxt; current.

current.proc = null;

setRole(current : IsolatedCell);

// remove ’p’ from running list

lp = p.prev; ln = p.next;

p.prev = null; p.next = null;

lp.next = ln; ln.prev = lp;

setRole(p : DeadProc);

}

4

3.2 Operational Semantics

In this section we give the operational semantics for our language. We focus on the
first three columns in Figures 3-2 and 3-3; the safety conditions in the fourth column
are detailed in Section 3.4.

Figure 3-2 gives the small-step operational semantics for the basic statements.
We use A ] B to denote the union A ∪ B where the sets A and B are disjoint.
The program state consists of the stack s and the concrete heap Hc. The stack s
is a sequence of pairs p@proci ∈ ×(Proc × N ), where p ∈ NCFG(proc) is a program
point, and proci ∈ Proc × N is an activation record of procedure proc. Program
points p ∈ NCFG(proc) are nodes of the control-flow graphs. There is one control-flow
graph for every procedure proc. An edge of the control-flow graph 〈p, p′〉 ∈ ECFG(proc)
indicates that control may transfer from point p to point p′. We write p : stat to
state that program point p contains a statement stat. The control flow graph of each
procedure contains special program points entry and exit indicating procedure entry
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Statement Transition Constraints Role Consistency

p : x=y.f
〈p@proci; s,Hc ] {〈proci, x, ox〉}〉→
〈p′@proci; s,H

′
c〉

x, y ∈ local(proc),
〈proci, y, oy〉, 〈oy, f, of〉 ∈ Hc,

〈p, p′〉 ∈ ECFG(proc),
H ′

c = Hc ] {proci, x, of}

accessible(of , proci, Hc),
con(H ′

c, offstage(H ′
c))

p : x.f=y
〈p@proci; s,Hc ] {〈ox, f, of〉}〉→
〈p′@proci; s,H

′
c〉

x, y ∈ local(proc),
〈proci, x, ox〉, 〈proci, y, oy〉 ∈ Hc,

〈p, p′〉 ∈ ECFG(proc),
H ′

c = Hc ] {〈ox, f, oy〉}

of ∈ onstage(Hc, proci)
con(H ′

c, offstage(H ′
c))

p : x=y
〈p@proci; s,Hc ] {〈proci, x, ox〉}〉→
〈p′@proci; s,H

′
c〉

x ∈ local(proc),
y ∈ var(proc),

〈proci, y, oy〉 ∈ Hc,
〈p, p′〉 ∈ ECFG(proc),

H ′
c = Hc ] {〈proci, x, oy〉}

con(H ′
c, offstage(H ′

c))

p : x=new
〈p@proci; s,Hc ] {〈proci, x, ox〉}〉→
〈p′@proci; s,H

′
c〉

x ∈ local(proc),
on fresh,

〈p, p′〉 ∈ ECFG(proc),
H ′

c = Hc ] {〈proci, x, on〉} ] nulls,
nulls = {on} × F × {null}

con(H ′
c, offstage(H ′

c))

p : test(c)
〈p@proci; s,Hc〉→
〈p′@proci; s,Hc〉

satisfiedc(c, proci, Hc),
〈p, p′〉 ∈ ECFG(proc)

con(Hc, offstage(Hc))

satisfiedc(x==y, proci, Hc) iff {o | 〈proci, x, o〉 ∈ Hc} = {o | 〈proci, y, o〉 ∈ Hc}
satisfiedc(!(x==y), proci, Hc) iff not satisfiedc(x==y, proci, Hc)

accessible(o, proci, Hc) := (∃p ∈ param(proc) : 〈proci, p, o〉 ∈ Hc)
or not (∃proc′j ∃v ∈ var(proc′) : 〈proc′j, v, o〉 ∈ Hc)

Figure 3-2: Semantics of Basic Statements
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Statement Transition Constraints Role Consistency

entry :
〈p@proci; s,Hc〉→
〈p′@proci; s,Hc ] nulls〉

nulls = {〈proci, v, nullc〉 |
v ∈ local(proc),

〈p, p′〉 ∈ ECFG(proc)
con(Hc, offstage(Hc))

p : proc′(xk)k
〈p@proci; s,Hc〉→
〈entry@proc′j; p

′@proci; s,H
′
c〉

j fresh in p@proci; s,
〈p, p′〉 ∈ ECFG(proc),

ok : 〈proci, xk, ok〉 ∈ Hc,
H ′

c = Hc ] {〈proc′j, pk, ok〉}k,
∀k pk = paramk(proc′)

conW(ra, Hc, S),
ra = {〈ok, preRk(proc′)〉}k,
S = offstage(Hc) ∪ {ok}k

exit :
〈p@proci; s,Hc〉→
〈s, Hc \ AF〉

AF = {〈proci, v, n〉 |
〈proci, v, n〉 ∈ Hc}

conW(ra, Hc, S),
ra = {〈parndk(proci), postRk(proc)〉}k,

S = offstage(Hc) ∪
{o | 〈proci, v, o〉 ∈ Hc}

parndk(proci) = o where 〈proci, paramk(proc), o〉 ∈ Hc

Figure 3-3: Semantics of Procedure Call

and exit, with no statements associated with them. We assume that each condition
of a test statement is of the form x==y or !(x==y) where x and y are either variables
or a special constant null which always points to the nullc object.

The concrete heap is either an error heap errorc or a non-error heap. A non-error
heap Hc ⊆ N × F × N ∪ ((Proc × N ) × V × N) is a directed graph with labelled
edges, where nodes represent objects and procedure activation records, whereas edges
represent heap references and local variables. An edge 〈o1, f, o2〉 ∈ N×F×N denotes
a reference from object o1 to object o2 via field f ∈ F . An edge 〈proci, x, o〉 ∈ Hc

means that local variable x in activation record proci points to object o.

A load statement x=y.f makes the variable x point to node of , which is referenced
by the f field of object oy, which is in turn referenced by variable y. A store statement
x.f=y replaces the reference along field f in object ox by a reference to object oy that
is referenced by y. The copy statement x=y copies a reference to object oy into variable
x. The statement x=new creates a new object on with all fields initially referencing
nullc, and makes x point to on. The statement test(c) allows execution to proceed
only if condition c is satisfied.

Figure 3-3 shows the semantics of procedure calls. Procedure call pushes new
activation record onto stack, inserts it into the heap, and initializes the parameters.
Procedure entry initializes local variables. Procedure exit removes the activation
record from the heap and the stack.

3.3 Onstage and Offstage Objects

At every program point the set nodes(Hc) of all objects of heap Hc can be partitioned
into:
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1. onstage objects (onstage(Hc)) referenced by a local variable or parameter of
some activation frame

onstage(Hc, proci):={o | ∃x ∈ var(proc)
〈proci, x, o〉 ∈ Hc}

onstage(Hc):=
⋃

proci

onstage(Hc, proci)

2. offstage objects (offstage(Hc)) unreferenced by local or parameter variables

offstage(Hc) := nodes(Hc) \ onstage(Hc)

Onstage objects need not have correct roles. Offstage objects must have correct roles
assuming some role assignment for onstage objects.

Definition 18 Given a set of role definitions and a set of objects Sc ⊆ nodes(Sc), we
say that heap Hc is role consistent for Sc, and we write con(Hc, Sc), iff there exists
a role assignment ρc : nodes(Hc) → R0 such that the locallyConsistent(o,Hc, ρc, Sc)
predicate is satisfied for every object o ∈ Sc.

We define locallyConsistent(o,Hc, ρc, Sc) to generalize the locallyConsistent(o,Hc, ρc)
predicate, weakening the acyclicity condition.

Definition 19 locallyConsistent(o,Hc, ρc, Sc) holds iff conditions 1), 2), and 3) of
Definition 2 are satisfied and the following condition holds:

4’) It is not the case that graph Hc contains a cycle o1, f1, . . . , os, fs, o1 such that
o1 = o, f1, . . . , fs ∈ acyclic(r), and additionally o1, . . . , os ∈ Sc.

Here Sc is the set of onstage objects that are not allowed to create a cycle whereas
objects in nodes(Hc) \ Sc are exempt from the acyclicity condition. The predicates
locallyConsistent(o,Hc, ρc, Sc) and con(Hc, Sc) are monotonic in Sc, so a larger Sc

implies a stronger invariant. For Sc = nodes(Hc), consistency for Sc is equivalent
with heap consistency from Definition 1. Note that the role assignment ρc specifies
roles even for objects o ∈ nodes(Hc) \ Sc. This is because the role of o may influence
the role consistency of objects in Sc which are adjacent to o.

At procedure calls, the role declarations for parameters restrict the set of poten-
tial role assignments. We therefore generalize con(Hc, Sc) to conW(ra, Hc, Sc), which
restricts the set of role assignments ρc considered for heap consistency.

Definition 20 Given a set of role definitions, a heap Hc, a set Sc ⊆ nodes(Hc),
and a partial role assignment ra ⊆ Sc → R, we say that the heap Hc is consistent
with ra for Sc, and write conW(ra, Hc, Sc), iff there exists a (total) role assignment
ρc : nodes(Hc) → R0 such that ra ⊆ ρc and for every object o ∈ Sc the predicate
locallyConsistent(o,Hc, ρc, Sc) is satisfied.
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3.4 Role Consistency

We are now able to precisely state the role consistency requirements that must be
satisfied for program execution. The role consistency requirements are in the fourth
row of Figures 3-2 and 3-3. We assume the operational semantics is extended with
transitions leading to a program state with heap errorc whenever role consistency is
violated.

3.4.1 Offstage Consistency

At every program point, we require con(Hc, offstage(Hc)) to be satisfied. This means
that offstage objects have correct roles, but onstage objects may have their role tem-
porarily violated.

3.4.2 Reference Removal Consistency

The Store statement x.f=y has the following safety precondition. When a reference
〈ox, f, of〉 ∈ Hc for 〈procj, x, ox〉 ∈ Hc, and 〈ox, f, of〉 ∈ Hc is removed from the heap,
both ox and of must be referenced from the current procedure activation record. It
is sufficient to verify this condition for of , as ox is already onstage by definition. The
reference removal consistency condition enables the completion of the role change
for of after the reference 〈ox, f, of〉 is removed and ensures that heap references are
introduced and removed only between onstage objects.

3.4.3 Procedure Call Consistency

Our programming model ensures role consistency across procedure calls using the
following protocol.

A procedure call proc′(x1, ..., xp) in Figure 3-3 requires the role consistency pre-
condition conW(ra, Hc, Sc), where the partial role assignment ra requires objects ok,
corresponding to parameters xk, to have roles preRk(proc′) expected by the callee, and
Sc = offstage(Hc) ∪ {ok}k for 〈procj, xk, ok〉 ∈ Hc.

To ensure that the callee proc′j never observes incorrect roles, we impose an accessi-
bility condition for the callee’s Load statements (see the fourth column of Figure 3-2).
The accessibility condition prohibits access to any object o referenced by some local
variable of a stack frame other than proc′j, unless o is referenced by some parameter
of proc′j. Provided that this condition is not violated, the callee proc′j only accesses
objects with correct roles, even though objects that it does not access may have in-
correct roles. In Chapter 5 we show how the role analysis statically ensures that the
accessibility condition is never violated.

At the procedure exit point (Figure 3-3), we require correct roles for all objects
referenced by the current activation frame proc′j. This implies that heap operations
performed by proc′j preserve heap consistency for all objects accessed by proc′j.

32



www.manaraa.com

Statement Transition Constraints Role Consistency

p : roleCheck(x1, . . . , xn, ra)
〈p@proci; s,Hc〉→
〈p′@proci; s,Hc〉 〈p, p′〉 ∈ ECFG

conW(ra, Hc, S),
S = offstage(Hc) ∪

{o | 〈proci, xk, o〉 ∈ Hc}

Figure 3-4: Operational Semantics of Explicit Role Check

3.4.4 Explicit Role Check

The programmer can specify a stronger invariant at any program point using state-
ment roleCheck(x1, . . . , xp, ra). As Figure 3-4 indicates, roleCheck requires the
conW(ra, Hc, Sc) predicate to be satisfied for the supplied partial role assignment
ra where Sc = offstage(Hc) ∪ {ok}k for objects ok referenced by given local variables
xk.

3.5 Instrumented Semantics

We expect the programmer to have a specific role assignment in mind when writing
the program, with this role assignment changing as the statements of the program
change the referencing relationships. So when the programmer wishes to change the
role of an object, he or she writes a program that brings the object onstage, changes
its referencing relationships so that it plays a new role, then puts it offstage in its
new role. The roles of other objects do not change.1

To support these programmer expectations, we introduce an augmented program-
ming model in which the role assignment ρc is conceptually part of the program’s
state. The role assignment changes only if the programmer changes it explicitly us-
ing the setRole statement. The augmented programming model has an underlying
instrumented semantics as opposed to the original semantics.

Example 21 The original semantics allows asserting different roles at different pro-
gram points even if the structure of the heap was not changed, as in the following
procedure foo.

role A1 { fields f : B1; }

role B1 { slots A1.f; }

role A2 { fields f : B2; }

role B2 { slots A2.f; }

procedure foo()

var x, y;

{

x = new; y = new;

x.f = y;

1An extension to the programming model supports cascading role changes in which a single role
change propagates through the heap changing the roles of offstage objects, see Section 6.4.
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Statement Transition Constraints Role Consistency

p : x=new
〈p@proci; s,Hc ] {〈proci, x, ox〉}, ρc〉→
〈p′@proci; s,H

′
c, ρ

′
c〉

x ∈ local(proc),
on fresh,

〈p, p′〉 ∈ ECFG(proc),
H ′

c = Hc

]{〈proci, x, on〉}
]{on} × F × {null},

ρ′c = ρc[on 7→ unknown]

conW(ρ′c, H
′
c, offstage(H ′

c))

p :
setRole(x:r)

〈p@proci; s,Hc, ρc〉→
〈p′@proci; s,Hc, ρ

′
c〉

x ∈ local(proci),
〈proci, x, ox〉 ∈ Hc,
ρ′c = ρc[ox 7→ r],
〈p, p′〉 ∈ ECFG

conW(ρ′c, Hc, offstage(Hc))

p : stat
〈s,Hc, ρc〉→
〈s′, H ′

c, ρc〉 〈s,Hc〉→〈s′, H ′
c〉

P ∧ conW(ρc ∪ ra, H ′′
c , S)

for every original condition
P ∧ conW(ra, H ′′

c , S)

Figure 3-5: Instrumented Semantics

roleCheck(x,y, x:A1,y:B1);

roleCheck(x,y, x:A2,y:B2);

}

Both role checks would succeed since each of the specified partial role assignments can
be extended to a valid role assignment. On the other hand, the role check statement
roleCheck(x,y, x:A1,y:B2) would fail.

The procedure foo in the instrumented semantics can be written as follows.

procedure foo()

var x, y;

{

x = new; y = new;

x.f = y;

setRole(x:A1); setRole(y:B1);

roleCheck(x,y, x:A1,y:B1);

setRole(x:A2); setRole(y:B2);

roleCheck(x,y, x:A2,y:B2);

}

The setRole statement makes the role change of object explicit. 4

The instrumented semantics extends the concrete heap Hc with a role assign-
ment ρc. Figure 3-5 outlines the changes in instrumented semantics with respect to
the original semantics. We introduce a new statement setRole(x:r), which mod-
ifies a role assignment ρc, giving ρc[ox 7→ r], where ox is the object referenced by
x. All statements other than setRole preserve the current role assignment. For
every consistency condition conW(ra, Hc, Sc) in the original semantics, the instru-
mented semantics uses the corresponding condition conW(ρc ∪ ra, Hc, Sc) and fails
if ρc is not an extension of ra. Here we consider con(Hc, S) to be a shorthand
for conW(∅, Hc, S). For example, the new role consistency condition for the Copy
statement x=y is conW(ρc, Hc, offstage(Hc)). The New statement assigns an identifier
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unknown to the newly created object on. By definition, a node with unknown does
not satisfy the locallyConsistent predicate. This means that setRole must be used to
set a a valid role of on before on moves offstage.

By introducing an instrumented semantics we are not suggesting an implemen-
tation that explicitly stores roles of objects at run-time. We instead use the instru-
mented semantics as the basis of our role analysis and ensure that all role checks can
be statically removed. Because the instrumented semantics is more restrictive than
the original semantics, our role analysis is a conservative approximation of both the
instrumented semantics and the original semantics.
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Chapter 4

Intraprocedural Role Analysis

This chapter presents an intraprocedural role analysis algorithm. The goal of the
role analysis is to statically verify the role consistency requirements described in the
previous chapter.

The key observation behind our analysis algorithm is that we can incrementally
verify role consistency of the entire concrete heap Hc by ensuring role consistency for
every node when it goes offstage. This allows us to represent the statically unbounded
offstage portion of the heap using summary nodes with “may” references. In contrast,
we use a “must” interpretation for references from and to onstage nodes. The exact
representation of onstage nodes allows the analysis to verify role consistency in the
presence of temporary violations of role constraints.

Our analysis representation is a graph in which nodes represent objects and edges
represent references between objects. There are two kinds of nodes: onstage nodes
represent onstage objects, with each onstage node representing one onstage object;
and offstage nodes, with each offstage node corresponding to a set of objects that
play that role. To increase the precision of the analysis, the algorithm occasionally
generates multiple offstage nodes that represent disjoint sets of objects playing the
same role. Distinct offstage objects with the same role r represent disjoint sets of
objects of role r with different reachability properties from onstage nodes.

We frame role analysis as a data-flow analysis operating on a distributive lattice
P(RoleGraphs) of sets of role graphs with set union ∪ as the join operator. This
chapter focuses on the intraprocedural analysis. We use procc to denote the topmost
activation record in a concrete heap Hc. In Chapter 5 we generalize the algorithm to
the compositional interprocedural analysis.

4.1 Abstraction Relation

Every data-flow fact G ⊆ RoleGraphs is a set of role graphs G ∈ G. Every role graph
G ∈ RoleGraphs is either a bottom role graph ⊥G representing the set of all concrete
heaps (including errorc), or a tuple G = 〈H, ρ, K〉 representing non-error concrete
heaps, where

• H ⊆ N×F×N is the abstract heap with nodes N representing objects and fields
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F . The abstract heap H represents heap references 〈n1, f, n2〉 and variables
of the currently analyzed procedure 〈proc, x, n〉 where x ∈ local(proc). Null
references are represented as references to abstract node null. We define abstract
onstage nodes onstage(H) = {n | 〈proc, x, n〉 ∈ H, x ∈ local(proc)∪param(proc)}
and abstract offstage nodes offstage(H) = nodes(H) \ onstage(H) \ {proc, null}.

• ρ : nodes(H) → R0 is an abstract role assignment, ρ(null) = nullR;

• K : nodes(H) → {i, s} indicates the kind of each node; when K(n) = i, then
n is an individual node representing at most one object, and when K(n) = s,
n is a summary node representing zero or more objects. We require K(proc) =
K(null) = i, and require all onstage nodes to be individual, K[onstage(H)] =
{i}.

The abstraction relation α relates a pair 〈Hc, ρc〉 of concrete heap and concrete role
assignment with an abstract role graph G.

Definition 22 We say that an abstract role graph G represents concrete heap Hc with
role assignment ρc, and write 〈Hc, ρc〉α G, iff G = ⊥G or: Hc 6= errorc, G = 〈H, ρ,K〉,
and there exists a function h : nodes(Hc) → nodes(H) such that

1) Hc is role consistent: conW(ρc, Hc, offstage(Hc)),

2) identity relations of onstage nodes with offstage nodes hold: if 〈o1, f, o2〉 ∈ Hc

and 〈o2, g, o3〉 ∈ Hc for o1 ∈ onstage(Hc), o2 ∈ offstage(Hc), and
〈f, g〉 ∈ identities(ρc(o1)), then o3 = o1;

3) h is a graph homomorphism: if 〈o1, f, o2〉 ∈ Hc then 〈h(o1), f, h(o2)〉 ∈ H;

4) an individual node represents at most one concrete object: K(n) = i implies
|h−1(n)| ≤ 1;

5) h is bijection on edges which originate or terminate at onstage nodes:
if 〈n1, f, n2〉 ∈ H and n1 ∈ onstage(H) or n2 ∈ onstage(H), then there exists
exactly one 〈o1, f, o2〉 ∈ Hc such that h(o1) = n1 and h(o2) = n2;

6) h(nullc) = null and h(procc) = proc;

7) the abstract role assignment ρ corresponds to the concrete role assignment:
ρc(o) = ρ(h(o)) for every object o ∈ nodes(Hc).

Note that the error heap errorc can be represented only by the bottom role graph ⊥G.
The analysis uses ⊥G to indicate a potential role error.

Condition 3) implies that role graph edges are a conservative approximation of
concrete heap references. These edges are in general “may” edges. Hence it is possible
for an offstage node n that 〈n, f, n1〉, 〈n, f, n2〉 ∈ H for n1 6= n2. This cannot happen
when n ∈ onstage(H) because of 5). Another consequence of 5) is that an edge in H
from an onstage node n0 to a summary node ns implies that ns represents at least
one object. Condition 2) strengthens 1) by requiring certain identity constraints for
onstage nodes to hold, as explained in Section 4.2.4.

Example 23 Consider the following role declaration for an acyclic list.
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next
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next

next

next

next

next
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null

L

LN

LN

h

h

h

h

h

h

LN

LN

null

Figure 4-1: Abstraction Relation
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role L { // List header

fields first : LN | null;

}

role LN { // List node

fields next : LN | null;

slots LN.next | L.first;

acyclic next;

}

Figure 4-1 shows a role graph and one of the concrete heaps represented by the
role graph via homomorphism h. There are two local variables, prev and current,
referencing distinct onstage objects. Onstage objects are isomorphic to onstage nodes
in the role graph. In contrast, there are two objects mapped to each of the summary
nodes with role LN (shown as LN-labelled rectangles in Figure 4-1). Note that the
sets of objects mapped to these two summary nodes are disjoint. The first summary
LN-node represents objects stored in the list before the object referenced by prev.
The second summary LN-node represents objects stored in the list after the object
referenced by current. 4

4.2 Transfer Functions

The key complication in developing the transfer functions for the role analysis is
to accurately model the movement of objects onstage and offstage. For example, a
load statement x=y.f may cause the object referred to by y.f to move onstage. In
addition, if x was the only reference to an onstage object o before the statement
executed, object o moves offstage after the execution of the load statement, and thus
must satisfy the locallyConsistent predicate.

The analysis uses an expansion relation ¹ to model the movement of objects
onstage and a contraction relation º to model the movement of objects offstage. The
expansion relation uses the invariant that offstage nodes have correct roles to generate
possible aliasing relationships for the node being pulled onstage. The contraction
relation establishes the role invariants for the node going offstage, allowing the node
to be merged into the other offstage nodes and represented more compactly.

We present our role analysis as an abstract execution relation
st
;. The abstract

execution ensures that the abstraction relation α is a forward simulation relation [63]
from the space of concrete heaps with role assignments to the set RoleGraphs. The
simulation relation implies that the traces of ; include the traces of the instrumented
semantics→. To ensure that the program does not violate constraints associated with
roles, it is thus sufficient to guarantee that ⊥G is not reachable via ;.

To prove that ⊥G is not reachable in the abstract execution, the analysis computes
for every program point p a set of role graphs G that conservatively approximates the
possible program states at point p. The transfer function for a statement st is an

image [[st]](G) = {G′ | G ∈ G, G
st
; G′}. The analysis computes the relation

st
; in

three steps:
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〈Hc, ρc〉 - 〈H ′
c, ρ

′
c〉

¡
¡¡

ª
α α

?

@
@@R

α

G1 ¹ G2
st

=⇒ G3 º G4

Figure 4-2: Simulation Relation Between Abstract and Concrete Execution

Transition Definition Conditions

〈H, ρ, K〉 x=y.f; G′ 〈H, ρ, K〉
ny ,f

¹ G1
x=y.f
=⇒ G2

nxºG′ 〈proc, x, nx〉, 〈proc, y, ny〉 ∈ H

〈H, ρ,K〉 x=y; G′ 〈H, ρ, K〉 x=y=⇒G1

n1ºG′ 〈proc, x, n1〉 ∈ H

〈H, ρ, K〉 x=new; G′ 〈H, ρ, K〉 x=new=⇒ G1

n1ºG′ 〈proc, x, n1〉 ∈ H

〈H, ρ,K〉 st; G′ 〈H, ρ, K〉 st
=⇒G′

st ∈ {x.f=y,
test(c),

setRole(x:r),
roleCheck(x1..p, ra)}

Figure 4-3: Abstract Execution ;

1. ensure that the relevant nodes are instantiated using expansion relation ¹ (Sec-
tion 4.2.1);

2. perform symbolic execution
st
=⇒ of the statement st (Section 4.2.3);

3. merge nodes if needed using contraction relation º to keep the role graph
bounded (Section 4.2.2).

Figure 4-2 shows how the abstraction relation α relates ¹,
st
=⇒, and º with the con-

crete execution → in instrumented semantics. Assume that a concrete heap 〈Hc, ρc〉
is represented by the role graph G1. Then one of the role graphs G2 obtained after

expansion remains an abstraction of 〈Hc, ρc〉. The symbolic execution
st
=⇒ followed

by the contraction relation º corresponds to the instrumented operational semantics
→.

Figure 4-3 shows rules for the abstract execution relation
st
;. Only Load statement

uses the expansion relation, because the other statements operate on objects that
are already onstage. Load, Copy, and New statements may remove a local variable
reference from an object, so they use contraction relation to move the object offstage
if needed. For the rest of the statements, the abstract execution reduces to symbolic
execution =⇒ described in Section 4.2.3.
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Transition Definition Condition

〈H, ρ, K〉
n,f

¹〈H, ρ, K〉 〈n, f, n′〉 ∈ H, n′ ∈ onstage(H)

〈H, ρ, K〉
n,f

¹ G′ 〈H, ρ, K〉
n0⇑
n′
〈H1, ρ1, K1〉

n0‖ G′ 〈n, f, n′〉 ∈ H, n′ ∈ offstage(H)
〈n, f, n0〉 ∈ H1

Figure 4-4: Expansion Relation

Nondeterminism and Failure

The
st
; relation is not a function because the expansion relation ¹ can generate a

set of role graphs from a single role graph. Also, there might be no
st
; transitions

originating from a given state G if the symbolic execution =⇒ produces no results.
This corresponds to a trace which cannot be extended further due to a test statement
which fails in state G. This is in contrast to a transition from G to ⊥G which indicates
a potential role consistency violation or a null pointer dereference. We assume that
=⇒ and º relations contain the transition 〈⊥G,⊥G〉 to propagate the error role graph.
In most cases we do not show the explicit transitions to error states.

4.2.1 Expansion

Figure 4-4 shows the expansion relation
n,f

¹ . Given a role graph 〈H, ρ, K〉, expansion
attempts to produce a set of role graphs 〈H ′, ρ′, K ′〉 in each of which 〈n, f, n0〉 ∈ H ′

and K(n0) = i. Expansion is used in abstract execution of the Load statement. It
first checks for null pointer dereference and reports an error if the check fails. If
〈n, f, n′〉 ∈ H and K(n′) = i already hold, the expansion returns the original state.
Otherwise, 〈n, f, n′〉 ∈ H with K(n′) = s. In that case, the summary node n′ is first

instantiated using instantiation relation
n0⇑
n′

. Next, the split relation
n0‖ is applied. Let

ρ(n0) = r. The split relation ensures that n0 is not a member of any cycle of offstage
nodes which contains only edges in acyclic(r). We explain instantiation and split in
more detail below.

Instantiation

Figure 4-5 presents the instantiation relation. Given a role graph G = 〈H, ρ, K〉,
instantiation

n0⇑
n′

generates the set of role graphs 〈H ′, ρ′, K ′〉 such that each concrete

heap represented by 〈H, ρ, K〉 is represented by one of the graphs 〈H ′, ρ′, K ′〉. Each
of the new role graphs contains a fresh individual node n0 that satisfies localCheck.
The edges of n0 are a subset of edges from and to n′.

Let H0 be a subset of the references between n′ and onstage nodes, and let H1 be
a subset of the references between n′ and offstage nodes. References in H0 are moved
from n′ to the new node n0, because they represent at most one reference, while
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〈H, ρ, K〉
n0⇑
n′
〈H ′, ρ′, K ′〉

H ′ = H \H0 ∪H ′
0 ∪H ′

1

ρ′ = ρ[n0 7→ ρ(n′)]
K ′ = K[n0 7→ i]
localCheck(n0, 〈H ′, ρ′, K ′〉)
H0 ⊆ H ∩ (onstage(H)× F × {n′} ∪ {n′} × F × onstage(H))
H1 ⊆ H ∩ (offstage(H)× F × {n′} ∪ {n′} × F × offstage(H))
H ′

0 = swing(n′, n0, H0)
H ′

1 ⊆ swing(n′, n0, H1)

swing(nold, nnew, H) = {〈nnew, f, n〉 | 〈nold, f, n〉 ∈ H} ∪
{〈n, f, nnew〉 | 〈n, f, nold〉 ∈ H} ∪
{〈nnew, f, nnew〉 | 〈nold, f, nold〉 ∈ H}

Figure 4-5: Instantiation Relation

references in H1 are copied to n0 because they may represent multiple concrete heap
references. Moving a reference is formalized via the swing operation in Figure 4-5.

The instantiation of a single graph can generate multiple role graphs depending on
the choice of H ′

0 and H ′
1. The number of graphs generated is limited by the existing

references of node n′ and by the localCheck requirement for n0. This is where our role
analysis takes advantage of the constraints associated with role definitions to reduce
the number of aliasing possibilities that need to be considered.

Split

The split relation is important for verifying operations on data structures such as skip
lists and sparse matrices. It is also useful for improving the precision of the initial set
of role graphs on procedure entry (Section 5.2.1).

The goal of the split relation is to exploit the acyclicity constraints associated with
role definitions. After a node n0 is brought onstage, split represents the acyclicity
condition of ρ(n0) explicitly by eliminating impossible paths in the role graph. It
uses additional offstage nodes to encode the reachability information implied by the
acyclicity conditions. This information can then be used even after the role of node
n0 changes. In particular, it allows the acyclicity condition of n0 to be verified when
n0 moves offstage.

Example 24 Consider a role graph for an acyclic list with nodes LN and a header
node L. The instantiated node n0 is in the middle of the list. Figure 4-6 a) shows a
role graph with a single summary node representing all offstage LN-nodes. Figure 4-6
b) shows the role graph after applying the split relation. The resulting role graph
contains two LN summary nodes. The first LN summary node represents objects
definitely reachable from n0 along next edges; the second summary NL node represents
objects definitely not reachable from n0. 4

Figure 4-7 shows the definition of the split operation on node n0, denoted by
n0‖ .

Let G = 〈H, ρ, K〉 be the initial role graph and ρ(n0) = r. If acyclic(r) = ∅, then the
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LNLN

L

null

n
0

a) Before Split

null

LNLN

L

LN

n
0

b) After Split

Figure 4-6: A Role Graph for an Acyclic List

44



www.manaraa.com

〈H, ρ, K〉
n0‖ 〈H, ρ, K〉, acycCheck(n0, 〈H, ρ,K〉, offstage(H))

〈H, ρ, K〉
n0‖ 〈H ′, ρ′, K ′〉, ¬acycCheck(n0, 〈H, ρ, K〉, offstage(H))

where
H ′ = (H \Hcyc) ∪Hoff ∪BfNR ∪BfR ∪BtNR ∪BtR ∪Nf ∪Nt

Hcyc = {〈n1, f, n2〉 | n1 or n2 ∈ Scyc}
Hoff = { 〈n′1, f, n′2〉 | n1 = c(n′1), n2 = c(n′2),

n1, n2 ∈ offstage1(H), n1 or n2 ∈ Scyc,
〈n1, f, n2〉 ∈ H }

\(SR × acyclic(r)× SNR)
H ∩ (onstage(H)× F ∪ {n0} × acyclic(r))× Scyc = AfNR ] AfR

H ∩ Scyc × (acyclic(r)× {n0} ∪ F × onstage(H)) = AtNR ] AtR

BfNR = {〈n1, f, hNR(n2)〉 | 〈n1, f, n2〉 ∈ AfNR}
BfR = {〈n1, f, hR(n2)〉 | 〈n1, f, n2〉 ∈ AfR}
BtNR = {〈hNR(n1), f, n2〉 | 〈n1, f, n2〉 ∈ AtNR}
BtR = {〈hR(n1), f, n2〉 | 〈n1, f, n2〉 ∈ AtR}
Nf = {〈n0, f, n′〉 | n′ ∈ SR, 〈n0, f, c(n′)〉 ∈ H, f ∈ acyclic(r)}
Nt = {〈n′, f, n0〉 | n′ ∈ SNR, 〈c(n′), f, n0〉 ∈ H, f ∈ acyclic(r)}
Scyc = {n | ∃n1, . . . , np−1 ∈ offstage(H) :

〈n0, f0, n1〉, . . . , 〈nk, fk, n〉, 〈n, fk+1, nk+2〉, 〈np−1, fp−1, n0〉 ∈ H,
f0, . . . , fp−1 ∈ acyclic(r)}

offstage1(H) = offstage(H) \ {n0}
r = ρ(n0)

ρ′(c(n)) = ρ(n)
K ′(c(n)) = K(n)

Figure 4-7: Split Relation
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split operation returns the original graph G; otherwise it proceeds as follows. Call a
path in graph H cycle-inducing if all of its nodes are offstage and all of its edges are
in acyclic(r). Let Scyc be the set of nodes n such that there is a cycle-inducing path
from n0 to n and a cycle-inducing path from n to n0.

The goal of the split operation is to split the set Scyc into a fresh set of nodes SNR

representing objects definitely not reachable from n0 along edges in acyclic(r) and a
fresh set of nodes SR representing objects definitely reachable from n0. Each of the
newly generated graphs H ′ has the following properties:

1) merging the corresponding nodes from SNR and SR in H ′ yields the original
graph H;

2) n0 is not a member of any cycle in H ′ consisting of offstage nodes and edges in
acyclic(r);

3) onstage nodes in H ′ have the same number of fields and aliases as in H.

Let S0 = nodes(H) \ Scyc and let hNR : Scyc → SNR and hR : Scyc → SR be bijections.
Define a function c : nodes(H ′) → nodes(H) as follows:

c(n) =





n, n ∈ S0

h−1
R (n), n ∈ SR

h−1
NR(n), n ∈ SNR

Then H ′ ⊆ {〈n′1, f, n′2〉 | 〈c(n′1), f, c(n′2)〉 ∈ H}.
Because there are two copies of S0 in H ′, there might be multiple edges 〈n′1, f, n′2〉

in H ′ corresponding to an edge 〈c(n1), f, c(n2)〉 ∈ H.
If both n′1 and n′2 are offstage nodes other than n0, we always include 〈n′1, f, n′2〉

in H ′ unless 〈n′1, f, n′2〉 ∈ SR × acyclic(r) × SNR. The last restriction prevents cycles
in H ′.

For an edge 〈n1, f, n2〉 ∈ H where n1 ∈ onstage(H) and n2 ∈ Scyc we include in
H ′ either the edge 〈n1, f, hNR(n2)〉 or 〈n1, f, hR(n2)〉 but not both. Split generates
multiple graphs H ′ to cover both cases. We proceed analogously if n2 ∈ onstage(H)
and n1 ∈ Scyc. The node n0 itself is treated in the same way as onstage nodes for
f /∈ acyclic(r). If f ∈ acyclic(r) then we choose references to n0 to have a source in
SNR, whereas the reference from n0 have the target in SR.

Details of the split construction are given in Figure 4-7. The intuitive meaning of
the sets of edges is the following:

Hoff : edges between offstage nodes
BfNR : edges from onstage nodes to SNR

BfR : edges from onstage nodes to SR

BtNR : edges from SNR to onstage nodes
BtR : edges from SR to onstage nodes
Nf : acyclic(r)-edges from n0 to SR

Nt : acyclic(r)-edges from SNR to n0

The sets BfNR and BfR are created as images of the sets AfNR and AfR which partition
edges from onstage nodes to nodes in Scyc. Similarly, the sets BtNR and BtR are
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〈H, ρ, K〉 nº〈H, ρ, K〉 ∃x ∈ var(proc) :
〈proc, x, n〉 ∈ H

〈H, ρ, K〉 nº normalize(〈H, ρ, K〉) nodeCheck(n, 〈H, ρ, K〉, offstage(H))

Figure 4-8: Contraction Relation

normalize(〈H, ρ,K〉) = 〈H ′, ρ′, K ′〉

where H ′ = {〈n1/∼, f, n2/∼〉 | 〈n1, f, n2〉 ∈ H}
ρ′(n/∼) = ρ(n)

K ′(n/∼) =

{
i, n/∼ = {n}, K(n) = i
s, otherwise

n1 ∼ n2 iff n1 = n2 or
(n1, n2 ∈ offstage(H), ρ(n1) = ρ(n2),
∀n0 ∈ onstage(H) : (reach(n0, n1) iff reach(n0, n2))

reach(n0, n) iff ∃n1, . . . , np−1 ∈ offstage(n),∃f1, . . . , fp ∈ acyclic(ρ(n0)) :
〈n0, f1, n1〉, . . . , 〈np−1, fp, n〉 ∈ H

Figure 4-9: Normalization

created as images of the sets AtNR and AtR which partition edges from nodes in Scyc

to onstage nodes.
We note that if in the split operation Scyc = ∅ then split has no effect and need

not be performed. In Figure 4-6, after performing a single split, there is no need to
split for subsequent elements of the list. Examples like this indicate that split will
not be invoked frequently during the analysis.

4.2.2 Contraction

Figure 4-8 shows the non-error transitions of the contraction relation
nº. The analysis

uses contraction when a reference to node n is removed. If there are other references
to n, the result is the original graph. Otherwise n has just gone offstage, so the
analysis invokes nodeCheck. If the check fails, the result is ⊥G. If the role check
succeeds, the contraction invokes normalization operation to ensure that the role
graph remains bounded. For simplicity, we use normalization whenever nodeCheck
succeeds, although it is sufficient to perform normalization only at program points
adjacent to back edges of the control-flow graph.

Normalization

Figure 4-9 shows the normalization relation. Normalization accepts a role graph
〈H, ρ, K〉 and produces a normalized role graph 〈H ′, ρ′, K ′〉 which is a factor graph

47



www.manaraa.com

Statement s Transition Conditions

x = y.f 〈H ] {proc, x, nx}, ρ,K〉 st
=⇒〈H ] {proc, x, nf}, ρ, K〉 〈proc, y, ny〉, 〈ny, f, nf〉 ∈ H

x.f = y 〈H ] {nx, f, nf}, ρ, K〉 st
=⇒〈H ] {nx, f, ny}, ρ,K〉 〈proc, x, nx〉, 〈proc, y, ny〉 ∈ H

nf ∈ onstage(H)

x = y 〈H ] {proc, x, nx}, ρ, K〉 st
=⇒〈H ] {proc, x, ny}, ρ,K〉 〈proc, y, ny〉 ∈ H

x = new 〈H ] {proc, x, nx}, ρ, K〉 st
=⇒〈H ] {proc, x, nn}, ρ′, K〉 nn fresh

ρ′ = ρ[nn 7→ unknown]

test(c) 〈H, ρ, K〉 st
=⇒〈H, ρ, K〉 satisfied(c, H)

setRole(x:r) 〈H, ρ, K〉 st
=⇒〈H, ρ[nx 7→ r], K〉 〈proc, x, nx〉 ∈ H

roleChOk(nx, r, 〈H, ρ,K〉)

roleCheck(x1..p, ra) 〈H, ρ, K〉 st
=⇒〈H, ρ, K〉

∀i 〈proc, xi, ni〉 ∈ H
nodeCheck(ni, 〈H, ρ,K〉, S)

S = offstage(H) ∪ {ni}i

ρ(ni) = ra(ni)

satisfied(x==y, Hc) iff {o | 〈proc, x, o〉 ∈ Hc} = {o | 〈proc, y, o〉 ∈ Hc}
satisfied(!(x==y), Hc) iff not satisfied(x==y, Hc)

Figure 4-10: Symbolic Execution of Basic Statements

of 〈H, ρ, K〉 under the equivalence relation ∼. Two offstage nodes are equivalent
under ∼ if they have the same role and the same reachability from onstage nodes.
Here we consider node n to be reachable from an onstage node n0 iff there is some
path from n0 to n whose edges belong to acyclic(ρ(n0)) and whose nodes are all in
offstage(H). Note that, by construction, normalization avoids merging nodes which

were previously generated in the split operation ‖, while still ensuring a bound on
the size of the role graph. For a procedure with l local variables, f fields and r roles
the number of nodes in a role graph is on the order of r2l so the maximum size of
a chain in the lattice is of the order of 2r2l

. To ensure termination we consider role
graphs equal up to isomorphism. Isomorphism checking can be done efficiently if
normalization assigns canonical names to the equivalence classes it creates.

4.2.3 Symbolic Execution

Figure 4-10 shows the symbolic execution relation
st
=⇒. In most cases, the symbolic

execution of a statement acts on the abstract heap in the same way that the statement
would act on the concrete heap. In particular, the Store statement always performs
strong updates. The simplicity of symbolic execution is due to conditions 3) and 5)
in the abstraction relation α. These conditions are ensured by the ¹ relation which
instantiates nodes, allowing strong updates. The symbolic execution also verifies the
consistency conditions that are not verified by ¹ or º.

Verifying Reference Removal Consistency

The abstract execution
st
; for the Store statement can easily verify the Store safety

condition from section 3.4.2, because the set of onstage and offstage nodes is known
precisely for every role graph. It returns ⊥G if the safety condition fails.
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Symbolic Execution of setRole

The setRole(x:r) statement sets the role of node nx referenced by variable x to
r. Let G = 〈H, ρ,K〉 be the current role graph and let 〈proc, x, nx〉 ∈ H. If nx

has no adjacent offstage nodes, the role change always succeeds. In general, there
are restrictions on when the change can be done. Let 〈Hc, ρc〉 be a concrete heap
with role assignment represented by G and h be a homomorphism from Hc to H.
Let h(ox) = nx. Let r0 = ρc(ox). The symbolic execution must make sure that the
condition conW(ρc, Hc, offstage(Hc)) continues to hold after the role change. Because
the set of onstage nodes does not change, it suffices to ensure that the original roles for
offstage nodes are consistent with the new role r. The acyclicity constraint involves
only offstage nodes, so it remains satisfied. The other role constraints are local, so
they can only be violated for offstage neighbors of nx. To make sure that no violations
occur, we require:

1. r ∈ fieldf (ρ(n)) for all 〈n, f, nx〉 ∈ H, and

2. 〈r, f〉 ∈ sloti(ρ(n)) for all 〈nx, f, n〉 ∈ H and every slot i such that 〈r0, f〉 ∈
sloti(ρ(n))

This is sufficient to guarantee conW(ρc, Hc, offstage(Hc)). To ensure condition 2) in
Definition 22 of the abstraction relation, we require that for every 〈f, g〉 ∈ identities(r),

1. 〈f, g〉 ∈ identities(r0) or

2. for all 〈nx, f, n〉 ∈ H: K(n) = i and (〈n, g, n′〉 ∈ H implies n′ = nx).

Symbolic Execution of roleCheck

The symbolic execution of the statement roleCheck(x1, . . . , xp, ra) ensures that the
conW predicate of the concrete semantics is satisfied for the concrete heaps which
correspond to the current abstract role graph. The symbolic execution returns the
error graph ⊥G if ρ is inconsistent with ra or if any of the nodes ni referenced by xi

fail to satisfy nodeCheck.

Accessibility Condition

The analysis ensures that the accessibility condition for the Load statement will be
satisfied in procedure proc before procedure proc is called. This technique makes use
of procedure effects and is described in Chapter 5.

4.2.4 Node Check

The analysis uses the nodeCheck predicate to incrementally maintain the abstraction
relation. We first define the predicate localCheck, which roughly corresponds to the
predicate locallyConsistent (Definition 2), but ignores the nonlocal acyclicity condition
and additionally ensures condition 2) from Definition 22.
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Definition 25 For a role graph G = 〈H, ρ, K〉, an individual node n and a set S, the
predicate localCheck(n,G) holds iff the following conditions are met. Let r = ρ(n).

1A. (Outgoing fields check) For fields f ∈ F , if 〈n, f, n′〉 ∈ H then ρ(n′) ∈ fieldf (r).

2A. (Incoming slots check) Let {〈n1, f1〉, . . . , 〈nk, fk〉} = {〈n′, f〉 | 〈n′, f, n〉 ∈ H} be
the set of all aliases of node n in abstract heap H. Then k = slotno(r) and there
exists a permutation p of the set {1, . . . , k} such that 〈ρ(ni), fi〉 ∈ slotpi

(r) for
all i.

3A. (Identity Check) If 〈n, f, n′〉 ∈ H, 〈n′, g, n′′〉 ∈ H, 〈f, g〉 ∈ identities(r), and
K(n′) = i, then n = n′′.

4A. (Neighbor Identity Check) For every edge 〈n′, f, n〉 ∈ H, if K(n′) = i, ρ(n′) = r′

and 〈f, g〉 ∈ identities(r′) then 〈n, g, n′〉 ∈ H.

5A. (Field Sanity Check) For every f ∈ F there is exactly one edge 〈n, f, n′〉 ∈ H.

Conditions 1A and 2A correspond to conditions 1) and 2) in Definition 2. Condition
3) in Definition 19 is not necessarily implied by condition 3A) if some of the neighbors
of n are summary nodes. Condition 3) cannot be established based only on summary
nodes, because verifying an identity constraint for field f of node n where 〈n, f, n′〉 ∈
H requires knowing the identity of n′, not only its existence and role. We therefore
rely on Condition 2) of the Definition 22 to ensure that identity relations of neighbors
of node n are satisfied before n moves offstage.

The predicate acycCheck(n,G, S) verifies the acyclicity condition from Defini-
tion 19.

Definition 26 We say that node n ∈ nodes(H) satisfies an acyclicity check in graph
G = 〈H, ρ, K〉 with respect to set S, and we write acycCheck(n,G, S), iff it is not
the case that H contains a cycle n1, f1, . . . , ns, fs, n1 where n1 = n, f1, . . . , fs ∈
acyclic(ρ(n)) and n1, . . . , ns ∈ S.

This enables us to define the nodeCheck predicate.

Definition 27 nodeCheck(n,G, S) holds iff both the predicate localCheck(n,G) and
the predicate acycCheck(n,G, S) hold.
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Chapter 5

Interprocedural Role Analysis

This chapter describes the interprocedural aspects of our role analysis. Interpro-
cedural role analysis can be viewed as an instance of the functional approach to
interprocedural data-flow analysis [80]. For each program point p, the role analysis
approximates program traces from procedure entry to point p. The solution in [80]
proposes tagging the entire data-flow fact G at point p with the data flow fact G0

at procedure entry. In contrast, our analysis computes the correspondence between
the heaps at procedure entry and the heaps at point p at the granularity of sets of
objects that constitute the role graphs. This allows our analysis to detect which re-
gions of the heap have been modified. We approximate the concrete executions of
a procedure with procedure transfer relations consisting of 1) an initial context and
2) a set of effects. Effects are fine-grained transfer relations which summarize load
and store statements and can naturally describe local heap modifications. In this
work we assume that procedure transfer relations are supplied and we are concerned
with a) verifying that transfer relations are a conservative approximation of procedure
implementation b) instantiating transfer relations at call sites.

5.1 Procedure Transfer Relations

A transfer relation for a procedure proc extends the procedure signature with an
initial context denoted context(proc), and procedure effects denoted effect(proc).

5.1.1 Initial Context

Figures 5-1 and 5-2 contain examples of initial context specification. An initial context
is a description of the initial role graph 〈HIC, ρIC, KIC〉 where ρIC and KIC are determined
by a nodes declaration and HIC is determined by a edges declaration. The initial role
graph specifies a set of concrete heaps at procedure entry and assigns names for sets
of nodes in these heaps. The next definition is similar to Definition 22.

Definition 28 We say that a concrete heap 〈Hc, ρc〉 is represented by the initial role
graph 〈HIC, ρIC, KIC〉 and write 〈Hc, ρc〉α0〈HIC, ρIC, KIC〉, iff there exists a function h0 :
nodes(Hc) → nodes(HIC) such that
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1. conW(ρc, Hc, h
−1
0 (read(proc));

2. h0 is a graph homomorphism;

3. KIC(n) = i implies |h−1
0 (n)| ≤ 1;

4. h0(nullc) = null and h0(procc) = proc;

5. ρc(o) = ρIC(h0(o)) for every object o ∈ nodes(Hc).

Here read(proc) is the set of initial-context nodes read by the procedure (see below).
For simplicity, we assume one context per procedure; it is straightforward to generalize
the treatment to multiple contexts.

A context is specified by declaring a list of nodes and a list of edges.
A list of nodes is given with nodes declaration. It specifies a role for every node

at procedure entry. Individual nodes are denoted with lowercase identifiers, summary
nodes with uppercase identifiers. By using summary nodes it is possible to indicate
disjointness of entire heap regions and reachability between nodes in the heap.

There are two kinds of edges in the initial role graph: parameter edges and heap
edges. A parameter edge p->pn is interpreted as 〈proc, p, pn〉 ∈ HIC. We require every
parameter edge to have an individual node as a target, we call such node a parameter
node. The role of a parameter node referenced by parami(proc) is always preRi(proc).
Since different nodes in the initial role graph denote disjoint sets of concrete objects,
parameter edges

p1 -> n1

p2 -> n1

imply that parameters p1 and p2 must be aliased,

p1 -> n1

p2 -> n2

force p1 and p2 to be unaliased, whereas

p1 -> n1|n2

p2 -> n1|n2

allow for both possibilities. A heap edge n -f-> m denotes 〈n, f, m〉 ∈ HIC. The
shorthand notation

n1 -f-> n2

-g-> n3

denotes two heap edges 〈n1, f, n2〉, 〈n1, g, n3〉 ∈ HIC. An expression n1 -f-> n2|n3

denotes two edges n1 -f-> n2 and n1 -f-> n3. We use similar shorthands for pa-
rameter edges.

Example 29 Figure 5-1 shows an initial context graph for the kill procedure from
Example 17. It is a refinement of the role reference diagram of Figure 1-1 as it gives
description of the heap specific to the entry of kill procedure. The initial context
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LL1

SleepingProc

proc

null

lx

l

l2

LL2

ph

P1

P2

px

p

proc

proc

proc

proc

proc
proc

proc

nodes ph : RunningHeader,

P1, px, P2 : RunningProc,

lx : LiveHeader,

LL1, l2, LL2 : LiveList;

edges p-> px, l-> px,

ph -next-> P1|px

-prev-> px|P2,

P1 -next-> P1|px

-prev-> ph|P1,

px -next-> P2|ph

-prev-> P1|ph,

P2 -next-> P2|ph

-prev-> P2|px,

lx -next-> LL1|l2,

LL1 -next-> LL1|l2

-proc-> P1|P2|SleepingProc

l2 -next-> LL2|null

-proc-> px,

LL2 -next-> LL2|null

-proc-> P1|P2|SleepingProc

Figure 5-1: Initial Context for kill Procedure
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makes explicit the fact that there is only one header node for the list of running
processes (ph) and one header node for the list of all active processes (lx). More
importantly, it shows that traversing the list of active processes reaches a node l2

whose proc field references the parameter node px. This is sufficient for the analysis
to conclude that there will be no null pointer dereferences in the while loop of kill
procedure since l2 is reached before null. 4

We assume that the initial context always contains the role reference diagram RRD
(Definition 8). Nodes from RRD are called anonymous nodes and are referred to via
role name. This further reduces the size of initial context specifications by leveraging
global role definitions. In Figure 5-1 there is no need to specify edges originating
from SleepingProc or even mention the node SleepingTree, since role definitions
alone contain enough information on this part of the heap to enable the analysis of
the procedure.

5.1.2 Procedure Effects

Procedure effects conservatively approximate the region of the heap that the pro-
cedure accesses and indicate changes to the referencing relationships in that region.
There are two kinds of effects: read effects and write effects.

A read effect specifies a set read(proc) of initial graph nodes accessed by the proce-
dure. It is used to ensure that the accessibility condition in Section 3.4.3 is satisfied.
If the set of nodes denoted by read(proc) is mapped to a node n which is onstage in
the caller but is not an argument of the procedure call, a role check error is reported
at the call site.

Write effects are used to modify caller’s role graph to conservatively model the
procedure call. A write effect e1.f = e2 approximates Store operations within a
procedure. The expression e1 denotes objects being written to, f denotes the field
written, and e2 denotes the set of objects which could be assigned to the field. Write
effects are may effects by default, which means that the procedure is free not to
perform them. It is possible to specify that a write effect must be performed by
prefixing it with a “!” sign.

Example 30 In Figure 5-2, the insert procedure inserts an isolated cell into the
end of an acyclic singly linked list. As a result, the role of the cell changes to LN. The
initial context declares parameter nodes ln and xn (whose initial roles are deduced
from roles of parameters), and mentions anonymous LN node from a default copy of
the role reference diagram RRD. The code of the procedure is summarized with two
write effects. The first write effect indicates that the procedure may perform zero or
more Store operations to field next of nodes mapped to ln or LN in context(proc).
The second write effect indicates that the execution of the procedure must perform a
Store to the field next of xn node where the reference stored is either a node mapped
onto anonymous LN node or null. 4

Effects also describe assignments that procedures perform on the newly created
nodes. Here we adopt a simple solution of using a single summary node denoted NEW
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procedure insert(l : L,

x : IsolatedN ->> LN)

nodes ln, xn;

edges l-> ln, x-> xn,

ln -next-> LN|null;

effects ln|LN . next = xn,

! xn.next = LN|null;

local c, p;

{

p = l;

c = l.next;

while (c!=null) {

p = c;

c = p.next;

}

p.next = x;

x.next = c;

setRole(x:LN);

}

Figure 5-2: Insert Procedure for Acyclic List

to represent all nodes created inside the procedure. We write nodes0(HIC) for the set
nodes(HIC) ∪ {NEW}.
Example 31 Procedure insertSome in Figure 5-3 is similar to procedure insert

in Figure 5-2, except that the node inserted is created inside the procedure. It is
therefore referred to in effects via generic summary node NEW. 4

We represent all may write effects as a set mayWr(proc) of triples 〈nj, f, n′j〉
where n, n′j ∈ nodes0(HIC) and f ∈ F . We represent must write effects as a se-
quence mustWrj(proc) of subsets of the set K−1

IC (i)× F × nodes0(HIC). Here 1 ≤ j ≤
mustWrNo(proc).

To simplify the interpretation of the declared procedure effects in terms of con-
crete reads and writes, we require the union ∪imustWri(proc) to be disjoint from
the set mayWr(proc). We also require the nodes n1, . . . , nk in a must write effect
n1| · · · |nk.f = e2 to be individual nodes. This allows strong updates when instanti-
ating effects (Section 5.3.2).

5.1.3 Semantics of Procedure Effects

We now give precise meaning to procedure effects. Our definition is slightly compli-
cated by the desire to capture the set of nodes that are actually read in an execution
while still allowing a certain amount of observational equivalence for write effects.

The effects of procedure proc define a subset of permissible program traces in
the following way. Consider a concrete heap Hc with role assignment ρc such that
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procedure insertSome(l : L)

nodes ln;

edges l-> ln,

ln -next-> LN|null;

effects ln|LN . next = NEW,

NEW.next = LN|null;

aux c, p, x;

{

p = l;

c = l.next;

while (c!=null) {

p = c;

c = p.next;

}

x = new;

p.next = x;

x.next = c;

setRole(x:LN);

}

Figure 5-3: Insert Procedure with Object Allocation

〈Hc, ρc〉α0〈HIC, ρIC, KIC〉 with graph homomorphism h0 from Definition 28. Consider
a trace T starting from a state with heap Hc and role assignment ρc. Extract the
subsequence of all loads and stores in trace T . Replace Load x=y.f by concrete read
read ox where ox is the concrete object referenced by x at the point of Load, and
replace Store x.f=y by a concrete write ox.f = oy where ox is the object referenced
by x and oy object referenced by y at the point of Store. Let p1, . . . , pk be the
sequence of all concrete read statements and q1, . . . , qk the sequence of all concrete
write statements. We say that trace T starting at Hc conforms to the effects iff for
all choices of h0 the following conditions hold:

1. h0(o) ∈ read(proc) for every pi of the form read o

2. there exists a subsequence qi1 , . . . , qit of q1, . . . , qk such that

(a) executing qi1 , . . . , qit on Hc yields the same result as executing the entire
sequence q1, . . . , qk

(b) the sequence qi1 , . . . , qit implements write effects of procedure proc

A typical way to obtain a sequence qi1 , . . . , qit from the sequence q1, . . . , qk is to
consider only the last write for each pair 〈oi, f〉 of object and field.

We say that a sequence qi1 , . . . , qit implements write effects mayWr(proc) and
mustWri(proc) for 1 ≤ i ≤ i0, i0 = mustWrNo if and only if there exists an injec-
tion s : {1, . . . , i0} → {i1, . . . , it} such that

56



www.manaraa.com

1. 〈h′(o), f, h′(o′)〉 ∈ mustWri(proc) for every concrete write qs(i) of the form o.f =
o′, and

2. 〈h′(o), f, h′(o′)〉 ∈ mayWr(proc) for all concrete writes qi of the form o.f = o′ for
i ∈ {i1, . . . , it} \ {s(1), . . . , s(i0)}.

Here h′(n) = h0(n) for n ∈ nodes(Hc) where Hc is the initial concrete heap and
h′(n) = NEW otherwise.

It is possible (although not very common) for a single concrete heap Hc to have
multiple homomorphisms h0 to the initial context HIC. Note that in this case we
require the trace T to conform to effects for all possible valid choices of h0. This
places the burden of multiple choices of h0 on procedure transfer relation verification
(Section 5.2) but in turn allows the context matching algorithm in Section 5.3.1 to
select an arbitrary homomorphism between a caller’s role graph and an initial context.

5.2 Verifying Procedure Transfer Relations

In this section we show how the analysis makes sure that a procedure conforms to its
specification, expressed as an initial context with a list of effects. To verify procedure
effects, we extend the analysis representation from Section 4.1. A non-error role graph
is now a tuple 〈H, ρ, K, τ, E〉 where:

1. τ : nodes(H) → nodes0(HIC) is initial context transformation that assigns an
initial context node τ(n) ∈ nodes(HIC) to every node n representing objects that
existed prior to the procedure call, and assigns NEW to every node representing
objects created during procedure activation;

2. E ⊆ ∪imustWri(proc) is a list of must write effects that procedure has performed
so far.

The initial context transformation τ tracks how objects have moved since the begin-
ning of procedure activation and is essential for verifying procedure effects which refer
to initial context nodes.

We represent the list E of performed must effects as a partial map from the set
K−1

IC (i) × F to nodes0(HIC). This allows the analysis to perform must effect folding
by recording only the last must effect for every pair 〈n, f〉 of individual node n and
field f .

5.2.1 Role Graphs at Procedure Entry

Our role analysis creates the set of role graphs at procedure entry point from the initial
context context(proc). This is simple because role graphs and the initial context have
similar abstraction relations (Sections 4.1 and 5.1). The difference is that parameters
in role graphs point to exactly one node, and parameter nodes are onstage nodes in
role graphs which means that all their edges are “must” edges.

Figure 5-4 shows the construction of the initial set of role graphs. First the
graph H0 is created such that every parameter parami(proc) references exactly one
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[[entry•]] =
{
〈H, ρ, K, τ, E〉

∣∣∣
P : {proc} × {parami(proc)}i → N,P ⊆ HIC

H0 = (HIC \ {proc} × param(proc)×N) ∪ P
ni = P (proc, parami(proc))
H1 ⊆ H0

H1 \H0 ⊆ {〈n′, f, n′′〉 | {n1, n2} ∩ {ni}i 6= ∅}
∀j : localCheck(nj, 〈H, ρ,K〉, nodes(H1))

H1

n1‖ H2

n2‖ · · ·
np

‖ H
ρ = ρIC

K = KIC

τ = ρIC

E = ∅
}

Figure 5-4: The Set of Role Graphs at Procedure Entry

parameter node ni. Next graph H1 is created by using localCheck to ensure that
parameter nodes have the appropriate number of edges. Finally, the instantiation is
performed on parameter nodes to ensure acyclicity constraints if the initial context
does not make them explicit already.

Statement s Transition Constraints

x = y.f 〈H ] {proc, x, nx}, ρ, K, τ, E〉 st
=⇒〈H ] {proc, x, nf}, ρ,K, τ, E〉 〈proc, y, ny〉, 〈ny, f, nf〉 ∈ H

τ(nf ) ∈ read(proc)

x = y.f 〈H ] {proc, x, nx}, ρ, K, τ, E〉 st
=⇒⊥G

〈proc, y, ny〉, 〈ny, f, nf〉 ∈ H
τ(nf ) /∈ read(proc)

x.f = y 〈H ] {nx, f, nf}, ρ, K, τ, E〉 st
=⇒〈H ] {nx, f, ny}, ρ, K, τ, E〉 〈proc, x, nx〉, 〈proc, y, ny〉 ∈ H

〈τ(nx), f, τ(ny)〉 ∈ mayWr(proc)

x.f = y 〈H ] {nx, f, nf}, ρ, K, τ, E〉 st
=⇒〈H ] {nx, f, ny}, ρ, K, τ, E ′〉

〈proc, x, nx〉, 〈proc, y, ny〉 ∈ H
〈τ(nx), f, τ(ny)〉 ∈ ∪imustWri(proc)
E ′ = updateWr(E, 〈τ(nx), f, τ(ny)〉)

x.f = y 〈H ] {nx, f, nf}, ρ, K, τ, E〉 st
=⇒⊥G

〈proc, x, nx〉, 〈proc, y, ny〉 ∈ H
〈τ(nx), f, τ(ny)〉 /∈ mayWr(proc)∪

∪imustWri(proc)

x = new 〈H ] {proc, x, nx}, ρ, K, τ, E〉 st
=⇒〈H ] {proc, x, nn}, ρ, K, τ ′, E〉 nn fresh

τ ′ = τ [nn 7→ NEW]

updateWr(E, 〈n1, f, n2〉) = E[〈n1, f〉 7→ n2]

Figure 5-5: Verifying Load, Store, and New Statements

5.2.2 Verifying Basic Statements

To ensure that a procedure conforms to its transfer relation the analysis uses the initial
context transformation τ to assign every Load and Store statement to a declared
effect. Figure 5-5 shows new symbolic execution of Load, Store and New statements.
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The symbolic execution of Load statement x=y.f makes sure that the node being
loaded is recorded in some read effect. If this is not the case, an error is reported.

The symbolic execution of the Store statement x.f=y first retrieves nodes τ(nx)
and τ(ny) in the initial role graph context that correspond to nodes nx and ny in the
current role graph. If the effect 〈τ(nx), f, τ(ny)〉 is declared as a may write effect the
execution proceeds as usual. Otherwise, the effect is used to update the list E of
must-write effects. The list E is checked at the end of procedure execution.

The symbolic execution of the New statement updates the initial context trans-
formation τ assigning τ(nn) = NEW for the new node nn.

The τ transformation is similarly updated during other abstract heap operations.
Instantiation of node n′ into node n0 assigns τ(n0) = τ(n′), split copies values of τ
into the new set of isomorphic nodes, and normalization does not merge nodes n1 and
n2 if τ(n1) 6= τ(n2).

5.2.3 Verifying Procedure Postconditions

At the end of the procedure, the analysis verifies that ρ(ni) = postRi(proc) where
〈proc, parami(proc), ni〉 ∈ H, and then performs node check on all onstage nodes
using predicate nodeCheck(n, 〈H, ρ, K〉, nodes(H)) for all n ∈ onstage(H).

At the end of the procedure, the analysis also verifies that every performed effect
in E = {e1, . . . , ek} can be attributed to exactly one declared must effect. This means
that k = mustWrNo(proc) and there exists a permutation s of set {1, . . . , k} such that
es(i) ∈ mustWri(proc) for all i.

5.3 Analyzing Call Sites

The set of role graphs at the procedure call site is updated based on the procedure
transfer relation as follows. Consider procedure proc containing call site p ∈ NCFG(proc)
with procedure call proc′(x1, . . . , xp). Let 〈HIC, ρIC, KIC〉 = context(proc′) be the initial
context of the callee.

Figure 5-6 shows the transfer function for procedure call sites. It has the following
phases:

1. Parameter Check ensures that roles of parameters conform to the roles ex-
pected by the callee proc′.

2. Context Matching (matchContext) ensures that the caller’s role graphs rep-
resent a subset of concrete heaps represented by context(proc′). This is done by
deriving a mapping µ from the caller’s role graph to nodes(HIC).

3. Effect Instantiation (
FX−→ ) uses effects mayWr(proc′) and mustWri(proc′) in

order to approximate all structural changes to the role graph that proc′ may
perform.

4. Role Reconstruction (
RR−→) uses final roles for parameter nodes and global

role declarations postRi(proc′) to reconstruct roles of all nodes in the part of the
role graph representing modified region of the heap.
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[[proc′(x1, . . . , xp)]](G) =
if ∃G ∈ G : ¬paramCheck(G) then {⊥G}
else try G1 = matchContext(G)

if failed then {⊥G}
else {G′′ | 〈G,µ〉 ∈ G1

〈addNEW(G), µ〉 FX−→〈G′, µ〉 RR−→G′′}

paramCheck(〈H, ρ, K, τ, E〉) iff
∀ni : nodeCheck(ni, G, offstage(H) ∪ {ni}i)
ni are such that 〈proc, xi, ni〉 ∈ H

addNEW(〈H, ρ,K, τ, E〉) =
〈H ∪ {n0} × F × {null},
ρ[n0 7→ unknown],
K[n0 7→ s],
τ [n0 7→ NEW],
E〉

where n0 is fresh in H

Figure 5-6: Procedure Call

The parameter check requires nodeCheck(ni, G, offstage(H)∪{ni}i) for the parameter
nodes ni. The other three phases are explained in more detail below.

5.3.1 Context Matching

Figure 5-7 shows our context matching function. The matchContext function takes a
set G of role graphs and produces a set of pairs 〈G,µ〉 where G = 〈H, ρ, K, τ, E〉 is a
role graph and µ is a homomorphism from H to HIC. The homomorphism µ guarantees
that α−1(G) ⊆ α−1

0 (context(proc′)) since the homomorphism h0 from Definition 28 can
be constructed from homomorphism h in Definition 22 by putting h0 = µ ◦ h. This
implies that it is legal to call proc′ with any concrete graph represented by G.

The algorithm in Figure 5-7 starts with empty maps µ = nodes(G) × {⊥} and
extends µ until it is defined on all nodes(G) or there is no way to extend it further. It
proceeds by choosing a role graph 〈H, ρ, K, τ, E〉 and node n0 for which the mapping µ
is not defined yet. It then finds candidates in the initial context that n0 can be mapped
to. The candidates are chosen to make sure that µ remains a homomorphism. The
accessibility requirement—that a procedure may see no nodes with incorrect role—
is enforced by making sure that nodes in inaccessible are never mapped into nodes
in read for the callee. As long as this requirement holds, nodes in inaccessible can
be mapped onto nodes of any role since their role need not be correct anyway. We
generally require that the set µ−1(n′0) for individual node n′0 in the initial context
contain at most one node, and this node must be individual. In contrast, there might
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matchContext(G) = match({〈G, nodes(G)× {⊥}〉 | G ∈ G})

match : P(RoleGraphs× (N ∪ {⊥})N) ⇀ P(RoleGraphs×NN)

match(Γ) =
Γ0 := {〈G,µ〉 ∈ Γ | µ−1(⊥) 6= ∅};
if Γ0 = ∅ then return Γ;
〈〈H, ρ, K, τ, E〉, µ〉 := choose Γ0;
Γ′ = Γ \ 〈〈H, ρ, K, τ, E〉, µ〉;
paramnodes := {n | ∃i : 〈proc, xi, n〉 ∈ H};
inaccessible := onstage(H) \ paramnodes;
n0 := choose µ−1(⊥);
candidates := {n′ ∈ nodes(HIC) |

(n0 /∈ inaccessible and ρIC(n
′) = ρ(n0)) or

(n0 ∈ inaccessible and n′ /∈ read(proc′))}⋂

〈n0,f,n〉∈H

µ(n)6=⊥

{
n′

∣∣∣ 〈n′, f, µ(n)〉 ∈ HIC

}

⋂

〈n,f,n0〉∈H

µ(n)6=⊥

{
n′

∣∣∣ 〈µ(n), f, n′〉 ∈ HIC

}
;

if candidates = ∅ then fail ;
if candidates = {n′0}, K(n0) = s,KIC(n

′
0) = i, µ−1(n′0) = ∅

then match(Γ′ ∪ {〈G′, µ[n1 7→ n′0]〉 | 〈H, ρ,K, τ, E〉
n1⇑
n0

G′})
else n′0 := choose {n′ ∈ candidates | K(n′) = s or

(K(n0) = i, µ−1(n′) = ∅)}
match(Γ′ ∪ 〈〈H, ρ, K, τ, E〉, µ[n0 7→ n′0]〉);

Figure 5-7: The Context Matching Algorithm
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be many individual and summary nodes mapped onto a summary node. We relax
this requirement by performing instantiation of a summary node of the caller if, at
some point, that is the only way to extend the mapping µ (this corresponds to the
first recursive call in the definition of match in Figure 5-7).

The algorithm is nondeterministic in the order in which nodes to be matched
are selected. One possible ordering of nodes is depth-first order in the role graph
starting from parameter nodes. If some nondeterministic branch does not succeed, the
algorithm backtracks. The function fails if all branches fail. In that case the procedure
call is considered illegal and ⊥G is returned. The algorithm terminates since every
procedure call lexicographically increases the sorted list of numbers |µ[nodes(H)]| for
〈〈H, ρ, K, τ, E〉, µ〉 ∈ Γ.

5.3.2 Effect Instantiation

The result of the matching algorithm is a set of pairs 〈G,µ〉 of role graphs and
mappings. These pairs are used to instantiate procedure effects in each of the role
graphs of the caller. Figure 5-8 gives rules for effect instantiation. The analysis first
verifies that the region read by the callee is included in the region read by the caller.
Then it uses map µ to find the inverse image S of the performed effects. The effects
in S are grouped by the source n and field f . Each field n.f is applied in sequence.
There are three cases when applying an effect to n.f :

1. There is only one node target of the write in nodes(H) and the effect is a must
write effect. In this case we do a strong update.

2. The condition in 1) is not satisfied, and the node n is offstage. In this case we
conservatively add all relevant edges from S to H.

3. The condition in 1) is not satisfied, but the node n is onstage i.e. it is a
parameter node1. In this case there is no unique target for n.f , and we cannot
add multiple edges either as this would violate the invariant for onstage nodes.
We therefore do case analysis choosing which effect was performed last. If there
are no must effects that affect n, then we also consider the case where the
original graph is unchanged.

5.3.3 Role Reconstruction

Procedure effects approximate structural changes to the heap, but do not provide
information about role changes for non-parameter nodes. We use the role reconstruc-

tion algorithm
RR−→ in Figure 5-9 to conservatively infer possible roles of nodes after

the procedure call based on role changes for parameters and global role definitions.
Role reconstruction first finds the set N0 of all nodes that might be accessed by

the callee since these nodes might have their roles changed. Then it splits each node

1Non-parameter onstage nodes are never affected by effects, as guaranteed by the matching
algorithm.
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〈〈H, ρ, K, τ, E〉, µ〉 FX−→〈⊥G, µ〉 where τ [µ−1[read(proc′)]] 6⊆ read(proc)

〈〈H, ρ, K, τ, E〉, µ〉 FX−→Gt where τ [µ−1[read(proc′)]] ⊆ read(proc)

〈H, ρ, K, τ, E〉
n1,f1` G1 ` · · ·

nt,ft` Gt

S = {〈n, f, n′〉 ∈ H | 〈µ(n), f, µ(n′)〉 ∈ mayWr(proc′) ∪ ∪imustWri(proc′)}
{〈n1, f1〉, . . . , 〈nt, ft〉} = {〈n, f〉 | 〈n, f, n′〉 ∈ S}

Single Write Effect Instantiation:

〈H1, ρ1, K1, τ1, E1〉
n,f

` G′

iff

case condition result

deterministic effect
{n1 | 〈n, f, n1〉 ∈ S} = {n0} and

∃i : 〈µ(n), f, µ(n0)〉 ∈ mustWri(proc′)

G′ = 〈H2, ρ1, K1, τ1, E2〉
H2 = H1 \ {〈n, f, n1〉 | 〈n, f, n1〉 ∈ H1}

∪{〈n, f, n0〉}
E2 = updateWr(E1, 〈τ(n), f, τ(n0)〉)

nondeterministic effect
for non-parameters

|{n1 | 〈n, f, n1〉 ∈ S}| > 1 or
∃n1 : 〈µ(n), f, µ(n1)〉 ∈ mayWr(proc′)

n ∈ offstage(H)
{〈τ(n), f, τ(n1)〉 | 〈n, f, n1〉 ∈ S} ⊆ mayWr(proc)

G′ = 〈H2, ρ1, K1, τ1, E2〉
H2 = orem(H1)∪
{〈n, f, n1〉 | 〈n, f, n1〉 ∈ S}

|{n1 | 〈n, f, n1〉 ∈ S}| > 1 or
∃n1 : 〈µ(n), f, µ(n1)〉 ∈ mayWr(proc′)

n ∈ offstage(H)
{〈τ(n), f, τ(n1)〉 | 〈n, f, n1〉 ∈ S} 6⊆ mayWr(proc)

G′ = ⊥G

nondeterministic effect
for parameters

|{n1 | 〈n, f, n1〉 ∈ S}| > 1 or
∃n1 : 〈µ(n), f, µ(n1)〉 ∈ mayWr(proc′)

n /∈ offstage(H)
{〈τ(n), f, τ(n1)〉 | 〈n, f, n1〉 ∈ S} ⊆ mayWr(proc)

G′ = 〈H2, ρ1, K1, τ1, E2〉
H0 = H1 \ {〈n, f, n1〉 | 〈n, f, n1〉 ∈ H1}

H2 = H1 or H2 = H0 ∪ {〈n, f, n1〉}
〈n, f, n1〉 ∈ S

¬({n1 | 〈n, f, n1〉 ∈ S} = {n1} and
∃i : 〈µ(n), f, µ(n0)〉 ∈ mustWri(proc′))

n /∈ offstage(H)
{〈τ(n), f, τ(n1)〉 | 〈n, f, n1〉 ∈ S} 6⊆ mayWr(proc)

G′ = ⊥G

orem(H1) =

{
H1 \ {〈n, f, n′〉 | 〈n, f, n′〉 ∈ H1}, if ∃i ∃n′ : 〈µ(n), f, µ(n′)〉 ∈ mustWri(proc′)

H1, otherwise

Figure 5-8: Effect Instantiation
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〈〈H, ρ, K, τ, E〉, µ〉 RR−→〈H ′, ρ′, K ′, τ ′, E ′〉

〈proc, xi, ni〉 ∈ H
N0 = µ−1[read(proc′)]
s : N0 ×R → N where s(n, r) are all different nodes fresh in H
ρ′ = ρ \ (N0 ×R) ∪ {〈s(n, r), r〉 | n ∈ N0, r ∈ R}

\({ni}i ×R) ∪ {〈ni, postRi(proc)〉}
K ′(s(n, r)) = K(n)
τ ′(s(n, r)) = τ(n)
E ′ = E
H0 = H \ {〈n1, f, n2〉 | n1 ∈ N0 or n2 ∈ N0}

∪ {〈s(n1, r1), f, s(n2, r2)〉 | 〈n1, f, n2〉 ∈ H, 〈r1, f, r2〉 ∈ RRD}
∪ {〈n1, f, s(n2, r2)〉 | 〈n1, f, n2〉 ∈ H, 〈ρIC(µ(n1)), f, r2〉 ∈ RRD}
∪ {〈s(n1, r1), f, n2〉 | 〈n1, f, n2〉 ∈ H, 〈r1, f, ρIC(µ(n2))〉 ∈ RRD}

H ′ = GC(H0)

Figure 5-9: Call Site Role Reconstruction

n ∈ N0 into |R| different nodes ρ(n, r), one for each role r ∈ R. The node ρ(n, r)
represents the subset of objects that were initially represented by n and have role
r after procedure executes. The edges between nodes in the new graph are derived
by simultaneously satisfying 1) structural constraints between nodes of the original
graph; and 2) global role constraints from the role reference diagram. The nodes
ρ(n, r) not connected to the parameter nodes are garbage collected in the role graph.
In practice, we generate nodes ρ(n, r) and edges on demand starting from parameters
making sure that they are reachable and satisfy both kinds of constraints.
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Chapter 6

Extensions

This chapter presents extensions of the basic role system. The multislot extension
allows statically unbounded number of aliases for objects. Root variables allow stack
frames to be treated as the source of aliases in role definitions. Singleton roles al-
low role declarations to specify that there is only one object of a given role. The
extension for cascading role changes allows the analysis to verify more complex role
changes. The extension to partial roles allows mutually independent role properties
to be specified separately and then combined.

6.1 Multislots

A multislot 〈r′, f〉 ∈ multislots(r) in the definition of role r allows any number of
aliases 〈o′, f, o〉 ∈ Hc for ρc(o

′) = r′ and ρc(o) = r. We require multislots multislots(r)
to be disjoint from all sloti(r). To handle multislots in role analysis we relax the
condition 5) in Definition 22 of the abstraction relation by allowing h to map more
than one concrete edge 〈o′, f, o〉 onto abstract edge 〈n′, f, n〉 ∈ H terminating at
an onstage node n provided that 〈ρ(n′), f〉 ∈ multislots(ρ(n)). The nodeCheck and
expansion relation ¹ are then extended appropriately. Note that a role graph does
not represent the exact number of references that fill each multislot. The analysis
therefore does not attempt to recognize actions that remove the last reference from
the multislot. Once an object plays a role with a multislot, all subsequent roles that
it plays must also have the multislot.

6.2 Root Variables

Root variables allow roles to be defined not only by heap references from other nodes
but also by references from procedure variables. The root variables are treated like
heap references for the purpose of role consistency; they are references from stack
frame objects. A procedure with root variables induces a role with fields correspond-
ing to root variables and no slots.

Example 32 Let us reconsider the scheduler example in Figure 1-2. We can require
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the LiveHeader node to be referenced by the root variable processes in the proce-
dure main, and RunningHeader to be referenced by the root variable running in the
following way.

role LiveHeader {

fields first : LiveList | null;

slots main.processes;

}

role RunningHeader {

fields next : RunningProc | RunningHeader,

prev : RunningProc | RunningHeader;

slots main.running,

RunningHeader.next | RunningProc.next,

RunningHeader.prev | RunningProc.prev;

identities next.prev, prev.next;

}

procedure main()

rootvar processes : LiveHeader | null,

running : RunningHeader | null;

{ ... }

This implicitly generates a role definition for the main procedure.

role main {

fields processes : LiveHeader,

running : RunningHeader;

}

4

6.3 Singleton Roles

Singleton roles are a simple way to improve the precision of role specifications and
role analysis by indicating roles for which there is only a single heap object of that
role. Singleton roles are often referred to from root variables.

We say that the predicate singleton(r) holds for role r ∈ R if |ρ−1
c (r)| ≤ 1 for every

valid concrete role assignment ρc of a heap created by the program. In essence, this
predicate allows distinguishing between individual objects and sets of objects in role
definitions.

Example 33 The intention of the definition in Figure 6-1 is to specify a circular
singly linked list with a header node. However, the specification in Figure 6-1 is too
general. For example, the graph in Figure 6-2 satisfies this specification. If we require
singleton(H), then the graph in Figure 6-2 does not satisfy role declarations any more.
4
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role H { // header node

fields next : H | N;

slots H.next | N.next;

}

role N { // internal node

fields next : H | N;

slots H.next | N.next;

}

Figure 6-1: Roles for Circular List

H

N

H

N

N

H

Figure 6-2: An Instance of Role Declarations

The developer can specify values of singleton predicate explicitly. In some cases
the analysis alone can infer this information using the following rules:

• procedure activation records are singleton if they are not members of a cycle
the call graph;

• if the roles Rs ∈ R are singleton and r′ ∈ R is such that one of the following
criteria holds:

– there exists f ∈ F such that fieldf (r) ⊆ Rs, or

– there exists i such that sloti(r
′) ⊆ Rs,

then r′ is a singleton role as well.

When analyzing programs with singleton roles, the role analysis maintains the
invariant that there is at most one node for each singleton role r by preventing
multiple nodes with role r to go offstage. When traversing data structures, the
singleton constraint eliminates cases in where two nodes with a singleton role are
brought onstage.
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role BufferNode {

fields next : BufferNode | null;

slots BufferNode.next | main.buffer;

acyclic next;

}

role WorkNode {

fields next : WorkNode | null;

WorkNode.next | main.work;

acyclic next;

}

procedure main()

rootvar buffer : BufferNode | null,

work : WorkNode | null;

auxvar x, y;

{

// create buffer and work lists

...

// swap buffer and work

x = buffer;

y = work;

buffer = y;

work = x;

setRoleCascade(x:WorkNode, y:BufferNode);

}

Figure 6-3: Example of a Cascading Role Change

A natural generalization of singleton roles arises in the context of parametrized
roles [57]. The extension to parametrized roles is orthogonal to the other aspects of
roles and we do not consider it in this thesis.

6.4 Cascading Role Changes

In some cases it is desirable to change roles of an entire set of offstage objects without
bringing them onstage. We use the statement setRoleCascade(x1 : r1, . . . , xn : rn)
to perform such cascading role change of a set of nodes. The need for cascading role
changes arises when roles encode reachability properties.

Example 34 Procedure main in Figure 6-3 has two root variables, buffer and work,
each being a root for a singly linked acyclic list. Elements of the first list have
BufferNode role and elements of the second list have WorkNode role. At some point
procedure swaps the root variables buffer and work, which requires all nodes in both
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lists to change the roles. These role changes are triggered by the setRoleCascade

statement. The statement indicates new roles for onstage nodes, and the analysis
cascades role changes to offstage nodes. 4

〈H, ρ, K, τ, E〉 st;〈H, ρ′, K, τ, E〉
st = setRoleCascade(x1 : r1, . . . , xn : rn)

ni : 〈proc, xi, ni〉 ∈ H
ρ′(ni) = ri

ρ′(n) = ρ(n), n ∈ onstage(H) \ {ni}i

N0 = {n ∈ offstage(H) | ∃n′ ∈ neighbors(n,H) : ρ(n′) 6= ρ′(n′)}
∀n ∈ N0 : cascadingOk(n,H, ρ,K, ρ′)

Figure 6-4: Abstract Execution for setRoleCascade

Given a role graph 〈H, ρ, K, E〉 cascading role change finds a new valid role assign-
ment ρ′ where the onstage nodes have desired roles and the roles of offstage nodes are
adjusted appropriately. Figure 6-4 shows abstract execution of the setRoleCascade

statement. Here neighbors(n,H) denotes nodes in H adjacent to n. The condition
cascadingOk(n,H, ρ,K, ρ′) makes sure it is legal to change the role of node n from
ρ(n) to ρ′(n) given that the neighbors of n also change role according to ρ′. This
check resembles the check for setRole statement in Section 4.2.3. Let r = rho(n)
and r′ = ρ′(n). Then cascadingOk(n,H, ρ,K, ρ′) requires the following conditions:

1. 〈n, f, n1〉 ∈ H implies ρ′(n1) ∈ fieldf (r
′);

2. slotno(r′) = slotno(r) = k, and for every list 〈n1, f1, n〉, . . . , 〈nk, fk, n〉 ∈ H
if there is a permutation p : {1, . . . , k} → {1, . . . , k} such that 〈ρ(ni), fi〉 ∈
slotpi

(r), then there is a permutation p′ : {1, . . . , k} → {1, . . . , k} such that
〈ρ(ni), fi〉 ∈ slotpi

(r′);

3. identity relations were already satisfied or can be explicitly checked: 〈f, g〉 ∈
identities(ρ′(n)) implies

(a) 〈f, g〉 ∈ identities(ρ(n)) or

(b) for all 〈n, f, n′〉 ∈ H: K(n′) = i, and
if 〈n′, g, n′′〉 ∈ H then n′′ = n;

4. either acyclic(ρ′(n)) ⊆ acyclic(ρ(n)) or
acycCheck(n, 〈H, ρ′, K〉, offstage(H)).

In practice there may be zero or more solutions that satisfy constraints for a given
cascading role change. Selecting any solution that satisfies the constraints is sound
with respect to the original semantics. A useful heuristic for searching the solution
space is to first explore branches with as few roles changed as possible. If no solutions
are found, an error is reported.

6.5 Partial Roles

In this section we extend our framework to allow combining roles that specify mutually
independent properties of objects. First we generalize field and slot constraints to
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allow specifying partial information about fields and slots of each role. We then give
an alternative semantics of roles where each node is assigned a set of roles. A pleasant
property of this semantics of roles is that the sets of roles applicable to each field can
be defined as the greatest fixpoint of the recursive role definitions. We then sketch an
extension of context matching and call site role reconstruction that allows procedures
to be analyzed without specifying the full set of roles of objects in the initial role
graphs.

6.5.1 Partial Roles and Role Sets

This section introduces partial roles. A partial role gives constraints only for a subset
of fields and slots. We use the term simple roles to refer to non-partial roles considered
so far.

Example 35 Consider the definition of a tree in Figure 6-5. This definition specifies

role TR { // tree root

fields left : TN | null,

right : TN | null;

left,right slots ;

}

role TN { // tree node

fields left : TN | null,

right : TN | null;

left,right slots : TR.left | TR.right | TN.left | TN.right;

}

Figure 6-5: Definition of a Tree

that a data structure is a tree along the left and right fields, but does not constrain
fields other than left and right. Similarly, the definition of a linked list in Figure 6-
6 gives only requirements for the next field. Note how definition of LH specifies a
partial “negative” slot constraint, namely the absence of a next field.

A definition for a threaded tree, for example, can leverage the preceding role
definitions to define the composite data structure.

role LTN extends TN,LN { // linked tree node

fields data : Stored;

}

Every object playing LTN role simultaneously plays TN and LN roles as well. In general,
an object playing more roles satisfies more constraints. 4

For partial roles, we change the convention that the fields not mentioned in a
fields declaration are always constrained to be null. Instead, the absence of a
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role LH { // list header

fields next : NL | null;

next slots ;

}

role LN { // list node

fields next : LN | null;

next slots LH.next | LN.next;

}

Figure 6-6: Definition of a List

field f implies no constraints on the roles that field f references. A slot constraint
for a partial role r contains an additional set scope(r) = {f1, . . . , fk} of fields that
determine the scope of the slot constraints. A slot declaration gives complete aliases
for references along scope(r) fields, but poses no requirements on aliases from other
fields.

Partial role definitions can reuse previous role definitions using the extends key-
word. We represent the extends relationships by the set of roles subroles(r) for each
role r. A set S ⊆ R is closed if subroles(r) ⊆ S for every r ∈ S.

6.5.2 Semantics of Partial Roles

To give the semantics of partial roles we define role-set assignment ρs
c to assign a

closed set of roles to every object. We say that a role assignment ρc is a choice of
a role-set assignment ρs

c iff ρc(r) ∈ ρs
c(r) for every role r ∈ R. We first generalize

locallyConsistent to take the role of the object o independently of role assignment ρc.
This definition is identical to Definition 2 except that the role of the object o is r
instead of ρc(o).

Definition 36 locallyConsistent(o,Hc, ρc, r) iff all of the following conditions are met.

1) For every field f ∈ F and 〈o, f, o′〉 ∈ Hc, ρc(o
′) ∈ fieldf (r).

2) Let {〈o1, f1〉, . . . , 〈ok, fk〉} = {〈o′, f〉 | 〈o′, f, o〉 ∈ Hc} be the set of all aliases
of node o. Then k = slotno(r) and there exists some permutation p of the set
{1, . . . , k} such that 〈ρc(oi), fi〉 ∈ slotpi

(r) for all i.

3) If 〈o, f, o′〉 ∈ Hc, 〈o′, g, o′′〉 ∈ Hc, and
〈f, g〉 ∈ identities(r), then o = o′′.

4) It is not the case that graph Hc contains a cycle
o1, f1, . . . , os, fs, o1 where o1 = o and
f1, . . . , fs ∈ acyclic(r)

We now define the local role-set consistency as follows.
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Definition 37 locallyRSConsistent(o,Hc, ρ
s
c) iff for every r ∈ ρs

c(o) there exists a
choice ρc of ρs

c such that locallyConsistent(o,Hc, ρc, r). We say that a heap Hc is role-
set consistent for a role-set assignment ρs

c if locallyRSConsistent(o,Hc, ρ
s
c) for every

o ∈ nodes(Hc). We call such role-set assignment ρs
c a valid role-set assignment.

We similarly extend the definitions of consistency for a given set of nodes from Defi-
nition 20.

The following observations follow from Definition 37:

1. if ρs
c is a valid role assignment, then |ρs

c(o)| ≥ 1 for every object o, otherwise
there would be no ρc which is a choice for ρs

c;

2. if |ρs
c(o)| = 1 for all o ∈ nodes(Hc), then heap consistency for partial roles is

equivalent to heap consistency for simple roles.

6.5.3 Fixpoint Definition of the Greatest Role Assignment

We first show that the set of all valid role-set assignments has a least upper bound.
We first define a partial order on functions from nodes(Hc) to P(R).

Definition 38 ρs
c1 v ρs

c2 iff ρs
c1(o) ⊆ ρs

c2(o) for every o ∈ Hc.

We then introduce the pointwise union.

Definition 39

(ρs
c1 t ρs

c2)(o) = ρs
c1(o) ∪ ρs

c2(o)

The union of two closed role-sets is a closed role-set, so the merge of two role-set
assignments is still a role-set assignment. Moreover, if both role-set assignments are
valid, the pointwise union is also a valid role-set assignment, as the following property
shows.

Property 40 Let ρs
c1 and ρs

c2 be valid role-set assignments for the heap Hc. Then
ρs

c1 t ρs
c2 is also a valid role assignment.

The property holds because every role assignment ρc which is a choice of ρs
c1 or a

choice of ρs
c2 is also a choice of ρs

c1 t ρs
c2.

Because there is a finite number of role-set assignments, Property 40 implies the
existence of the greatest role-set assignment ρsM

c which is the merge of all valid role
assignments.

Definition 41 Let ρs
c1, . . . , ρs

cN be all valid role assignments for the heap Hc. We
define the greatest role assignment ρsM

c as

ρsM
c = ρs

c1 t · · · t ρs
cN
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Definition 42 Let ρs
c : nodes(Hc) → P(R). Then F (ρs

c) : nodes(Hc) → P(R) is a
defined by

F (ρs
c)(o) = {r ∈ ρs

c(o) | subroles(r) ⊆ ρs
c(o) and

there exists a choice ρc of ρs
c such that

locallyConsistent(o,Hc, ρc, r)}

Property 43 The greatest role-set assignment for a concrete heap Hc is a greatest
fixpoint of function F .

Proof. It is easy to see that F (ρs
c1) v F (ρs

c2) whenever ρs
c1 v ρs

c2. Also, F (ρs
c) v ρs

c

and the empty role-set assignment ρs
c(o) = ∅ is a fixpoint of F .

Let ρs
c0 be such that ρs

c0(o) = R for all o ∈ Hc. Consider the sequence F i(ρs
c0) for

i ≥ 0. There exists i0 such that F i(ρs
c0) = ρs

c∗ for i ≥ i0 where ρs
c∗ is a fixpoint of F .

Because F (ρs
c∗)(o) = ρs

c∗(o) for each o, it follows that ρs
c∗ is a valid role-set assignment.

Moreover, if ρs
c is any other valid role-set assignment, then ρs

c v F i(ρs
c0) for every i, so

ρs
c v ρs

c∗. We conclude that the fixpoint ρs
c∗ is the greatest valid role assignment ρsM

c .

6.5.4 Expressibility of Partial Roles

The partial roles allow data structures to be described compositionally. Another
nice property of partial roles is that there is a canonical role-set assignment ρsM

c .
A drawback of considering only the greatest role-set assignment is that some data
structure constraints are not expressible.

Example 44 The set of cycles of even length can be described using the following
simple role definitions.

role Even {

fields next : Odd;

slots Odd.next;

}

role Odd {

fields next : Even;

slots Even.next;

}

No odd length cycle satisfies this role assignment. Each even length cycle o1, . . . , o2k

has two role assignments ρc1 and ρc2, where ρc1(o2i+1) = Odd and ρc1(o2i) = Even,
whereas ρc2(o2i+1) = Even and ρc2(o2i) = Odd.

On the other hand, the same role definitions have unique greatest role assignment
ρs

c = ρs
c1 t ρs

c2, where ρs
c(o) = {Even, Odd} for all o. This role assignment is valid not

only for even length cycles, but also for odd length cycles. 4

The constraints that can be specified by partial roles and role-set assignments are
similar to constraints that can be specified using simple roles and role assignments.
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In the absence of acyclicity constraints, given a set of partial role definitions, it is
possible to exhibit a set of simple role definitions which capture the same constraints.

This construction introduces a simple role each closed set of partial roles, similar
to the construction showing the equivalence of deterministic and nondeterministic
finite state automata [61] or deterministic and nondeterministic finite tree automata
[34, 15]. Construction is complicated by the form of our slot constraints, but can
be done by introducing additional roles that simulate slot constraint conjunction.
(The ability to perform conjunction of slot constraints is an easy consequence of the
equivalence of slot constraints with the generalized slot constraints in Section A.1.)
The construction could also be performed for acyclicity constraints if we generalized
them to specify a family of sets of fields and forbid cycles along paths with fields from
each of the sets in the family.

Even after performing this construction, it remains the fact that partial roles
induce additional partial order structure, which is not available in simple roles.

6.5.5 Role Subtyping

We now consider the problem of role subtyping at procedure call sites. A larger set
of nodes for a node implies stronger constraints for that node. We would then expect
a procedure call to be legal when the caller’s role-sets are supersets of role-sets of
the initial context. The problem is that a larger set ρs

c(n), while implying a stronger
constraint on the node n, implies weaker constraint on the nodes adjacent to n. The
following example shows that the superset conditions on role-sets is in general not
sufficient.

Example 45 Define roles A and B as follows:

role A {

f slots A.f,

B.f | A.f;

}

role B { }

role C { }

Consider the following role graph in the caller

AB B

A

f
f

f f

f

C

a
b

c

and assume that the callee has the following initial role graph.

74



www.manaraa.com

B B

A

f
f

f f

f

C

a
b

c

Clearly there is a homomorphism µ from the caller’s role graph to the initial role
graph such that ρs

1(n) ⊇ ρs
2(µ(n)) for all nodes n. The following heap is an instance

of the caller’s role graph.

AB

A

B

B

C

f

f

f
f

a
b

c

However, it is not possible to assign sets of roles to objects to make it an instance of
the role graph in the initial context. 4

The following property shows that a simple restriction on slot constraints makes
the role-set inclusion criterion valid.

Property 46 Let 〈H, ρs, K〉 and 〈HIC, ρ
s
IC, KIC〉 be role graphs and µ : nodes(H) →

nodes(HIC) a graph homomorphism such that:

1. ρs(n) ⊇ ρs
IC(µ(n)) for all n ∈ nodes(H);

2. if 〈n1, f, n0〉 ∈ H, r0 ∈ ρs
IC(µ(n0)), r1 ∈ ρs(n1), and 〈r1, f〉 ∈ sloti(r0) for some

i, then 〈r2, f〉 ∈ sloti(r0) for some r2 ∈ ρs
IC(µ(n1)).

Let Hc be a concrete heap such and ρs
c1 a valid role-set assignment for Hc. Assume that

h is a homomorphism from Hc to H such that ρs
c1(o) = ρs(h(o)) for all o ∈ nodes(Hc).

Define
ρs

c2(o) = ρs
IC(µ(h(o)))

for all o ∈ nodes(Hc). Then ρs
c2 is also a valid role-set assignment for Hc.
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Proof. To show that ρs
c2 is a valid role-set assignment for Hc, consider any object

o ∈ nodes(Hc) and one of its roles r0 ∈ ρs
c2(o). Because r0 ∈ ρs

c2(o), identities and
acyclicity constraints hold for o. We show that field and slot constraints hold as well.

To show that field constraints of r0 hold, consider any edge 〈o, f, o1〉 ∈ Hc. Then
〈n, f, n1〉 ∈ HIC where n = µ(h(o)) and n1 = µ(h(o1)). Because HIC is a subgraph of
the static role diagram, fieldf (r0)∩ ρs

IC(n1) 6= ∅, otherwise the edge 〈n, f, n1〉 would be
superfluous. Since ρs

2(o1) = ρs
IC(n1) by definition of ρs

2, we have fieldf (r0) ∩ ρs
2(o1) 6= ∅

which means that the field constraint for f is satisfied in Hc.
To show that slot constraints of r0 hold, consider any edge 〈o1, f, o〉 ∈ Hc. Because

ρs
c1 is a valid role assignment and r0 ∈ ρs

c1(o), there exists slot i and role r1 ∈ ρs
c1(o1)

such that 〈r1, f〉 ∈ sloti(r0). By the assumption 2), since 〈h(o1), f, h(o)〉 ∈ H, r0 ∈
ρs

IC(h(o)) and r1 ∈ ρs(h(o1)), there exists r2 ∈ ρs
IC(µ(h(o1)) such that 〈r2, f〉 ∈ sloti(r0).

Since ρs
IC(µ(h(o1)) = ρs

c2(o1), it follows that the slot constraint of o is satisfied.

The condition 2) in Property 46 can be replaced by a stronger but simpler condi-
tion.

Definition 47 We say that role r0 depends on r1 iff for some slot i, 〈r1, f〉 ∈ sloti(r0)
and there exists another slot j 6= i of role r0 such that 〈r2, f〉 ∈ slotj(r0) for some role
r2.

Property 48 Let 〈H, ρs, K〉 and 〈HIC, ρ
s
IC, KIC〉 be role graphs and µ : nodes(H) →

nodes(HIC) a graph homomorphism such that:

1’) ρs(n) ⊇ ρs
IC(µ(n)) for all n ∈ nodes(H);

2’) if r1 ∈ ρs(n) \ ρs
IC(µ(n)) for some n, and r0 depends on r1, then for all n′ ∈

nodes(HIC), r0 /∈ ρs
IC(n

′).

Then the condition 2) of Property 46 is satisfied.

Proof. Let 〈n1, f, n〉 ∈ H, r0 ∈ ρs
IC(n), and r1 ∈ ρs(H) and 〈r1, f〉 ∈ sloti(r0). If

r1 ∈ ρs
IC(µ(n)) then we can take r2 = r1 and the condition 2) is satisfied. Now assume

r1 ∈ ρs(n) \ ρs
IC(µ(n)). Since r0 ∈ ρs

IC(n), by assumption 2’), r0 does not depend on
r1. This means that i is the only slot of r0 that contains the field f . Because the
edge 〈µ(n1), f, µ(n)〉 is in HIC, and HIC, it follows that 〈r2, f〉 ∈ sloti(r0) for some
r2 ∈ ρs

IC(n1). This means that the condition 2) is satisfied.

Based on previous properties we can derive a context matching algorithm that
allows role graphs in the call site to have larger sets of roles than nodes in the initial
context.

In order to further increase the precision of call site verification, we would like
to preserve the larger larger set of role graphs in the caller. This is possible because
procedure effects specify which object fields can be modified during execution of the
caller. The role reconstruction algorithm for partial roles is similar to algorithm in
Figure 5-9 except that it operates on sets of roles instead of individual roles. To
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consider how to preserve the wider set of roles, consider a role r ∈ ρs(n) \ ρs
IC(µ(n)).

The role reconstruction splits n into a set of nodes each of which has assigned some
role-set S. In the absence of write effects the algorithm would need to generate nodes
with role-sets S that do not contain r. If the write effects imply that the role r
cannot be violated, then only role-sets S containing r need to be generated, which
increases the precision and reduces the size of role graphs after the procedure call.
To compute the set of roles that are preserved, role reconstruction starts with sets
p(n) = ρs(n) \ ρs

IC(µ(n)) assigned to each node n, and iteratively decreases sets p(n)
if a r ∈ p(n) depends on a modified field or previously eliminated role.

We note that, similarly to multislots, partial roles allow a statically unbounded
number of aliases. Whereas multislots explicitly give permission for existence of
certain aliases, partial roles allow all the existence of aliases not mentioned in the role
definition.
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Chapter 7

Related Work

In this chapter we present the relationship of our work with previous approaches to
program analysis, checking, and verification. We first compare our work with the
typestate systems including alias types [82] and calculus of capabilities [19]. We
mention the previous work on aliasing control for object-oriented languages [46] and
the use of roles in object-oriented modeling [70] and database programming languages
[35]. We compare our role analysis with shape types [32], graph types [64], path matrix
analysis [36], and parametric shape analysis [78]. We briefly relate our approach to
some other interprocedural analyses and examine our work in the context of program
verification.

7.1 Typestate Systems

A typestate system for statically verifying initialization properties of values was pro-
posed in [84, 83]. The type state checking was based on a linear two-pass typestate
checking algorithm. In this typestate system, the state of an object depends only
on its initialization status. This system did not support aliasing of dynamically allo-
cated structures. Aliasing causes problems for typestate-based systems because the
declared typestates of all aliases must change whenever the state of the referred ob-
ject changes. Faced with the complexity of aliasing, [84] resorted to a more controlled
language model based on relations. Requiring the relations to exist only between fully
initialized objects enables verification of initialization status of objects in the presence
of dynamically growing structures. However, this solution is entirely inadequate for
the properties which our role system verifies. Our goal is to verify application-specific
properties of objects, and not object initialization. Different objects stored in dynam-
ically growing data structures have different application-specific properties, which our
system captures as different roles. When object’s properties change, our system ver-
ifies that the change is consistent with all relations in which the object participates.
Our technique is applicable regardless of whether the relations between objects are
implemented as pointer fields of records or in some other way. The data-flow analysis
[76] performs verification of constraints on relations and sets that implement dynamic
structures, but it does not perform instantiation operation like [78] and our role anal-
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ysis, which leads to the loss of precision when analyzing destructive updates to data
structures.

More recently proposed typestate approaches [20, 88, 82, 19] use linear types to
support state changes of dynamically allocated objects. The goal of these systems
is to enforce safety properties of low-level code, in particular memory management.
This is in contrast with our system which aims at verifying higher-level constraints
in a language with a garbage collected heap memory model. The capability calculus
[19] allows tracking the aliasing of memory regions by doing a form of compile-time
reference counting, but does not track aliasing properties of individual objects. Alias
types [82] represent precisely the aliasing of individual objects referenced by local
variables, but do not support recursive data structures. Recursive alias types [88] al-
low specification of recursive data structures as unfolding of basic elaboration steps.
This allows descriptions of tree-like data structures with parent pointers, but does
not permit approximating arbitrary data structures. This property of recursive alias
types is shared with shape types [32] and graph types [54] discussed below. Another
difference compared to our work is that these type systems present only a type check-
ing, and not a type inference algorithm, whereas our analysis performs role inference
inside each procedure. The application of these type systems to an imperative pro-
gramming language Vault is presented in [20]. Because it is based on alias types and
capability calculus, Vault’s type system cannot approximate arbitrary data struc-
tures. The type system of Vault tracks run-time resources using unique keys. To
simplify the type checking, Vault requires the equality of sets of keys at each program
point. This is in contrast to predicative data-flow analyses such as role analysis, which
track the sets of possible aliasing relationships at each program point. Our approach
makes the results of the analysis less sensitive to semantic preserving rearrangements
of statements in the program.

Like [91, 92], our role analysis performs non-local inference of program properties
including the synthesis of loop invariants. The difference is that [91, 92] focus on lin-
ear constraints between integers and handle recursive data structures conservatively,
whereas we do not handle integer arithmetic but have a more precise representation
of the heap that captures the constraints between objects participating in multiple
data structures.

7.2 Roles in Object-Oriented Programming

It is widely recognized that conventional mechanisms in object-oriented programming
languages do not provide sufficient control over object aliasing. As a result, it is not
possible to prevent representation exposure [21] for linked data structures. As some
previous systems, our roles can be used to avoid representation exposure, even though
this is not the only purpose of roles.

Islands [46] were designed to help reasoning about object-oriented programs. An
island is a set of objects dominated by a bridge object in the graph representing the
heap. To keep track of aliasing, [46] introduces unique and free variables with reference
counts zero and one, respectively. It also defines a destructive read operation which
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can be used to pass free objects into procedures. Roles can also be used to enforce
the invariant that an object dominates a set of objects reachable along a given set of
fields by specifying slot constraints that prevent aliases from objects outside the data
structure. Our slot constraints substantially generalize unique and free variables. Our
role analysis uses precise shape analysis techniques, which is in sharp contrast with
purely syntactic rules of [46].

Balloon types [4] is another system that supports encapsulation. It requires min-
imal program annotations. The encapsulation in balloon types is enforced using
abstract interpretation. The analysis representation records reachability status be-
tween objects referenced by variables and relationship of these objects with clusters
of objects. In most cases our role analysis is more precise than [4] because we track
the aliasing properties of objects in recursive data structures, and not only properties
of paths between objects.

Ownership types [14, 66] introduce the notion of object ownership to prevent
representation exposure. In contrast to the type system [14] where the owner of an
object is fixed, our role analysis allows the objects to change the data structure.
Furthermore, an object in our system can be simultaneously a member of multiple
data structures, and the role analysis verifies the movements of objects specified in
procedure interfaces.

The object-oriented community has also become aware of the benefits of the sys-
tems where the class of an object changes over the course of the computation. Predi-
cate classes [11] describe objects whose class depends on values of arbitrary predicates.
The system [11] computes the values of predicates at run-time and does not attempt
to statically infer values of these predicates, leaving to the user even the responsibility
of ensuring the disjointness of predicates for incomparable classes. One of the features
of predicate classes is a dynamic dispatch based on the current class of the object.
In contrast, we are proposing a a selected family of heap constraints and a static role
analysis that keeps track of these constraints. Our role system does not have dynamic
dispatch. Instead, the declared roles of parameters define a precondition on a proce-
dure call. This precondition changes the operations applicable for an object based on
the statically computable information about the dynamic state of the object. Finally,
[11] does not attempt to define the state of an object based on object’s aliases, which
is the central idea of our approach. Even with the great freedom gained by giving up
the static checking of classes, systems like [11] cannot verify invariants expressed with
our slot constraints; this would in general require adding additional instrumentation
fields that track the inverse references.

Dynamic object re-classification [26] presents a system closer to the conventional
class-based languages, with method invocation implemented through double dynamic
dispatch. The proposal [26] does not statically analyze heap constraints. The work
[93] describes a system inspired by a knowledge based reasoning system. The object
re-classification in [93] is also implemented by the run-time system. Other approaches
propose using design patterns to overcome the absence of language support for dy-
namically changing classes [33, 29, 40, 86].

The term “role” as used in object-oriented modeling and object-oriented database
communities is different from our concept of roles. A role of an object in these systems
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does not capture object’s aliasing properties and other heap constraints. In [70], role
denotes the purpose of an object in a collaboration [86] or a design pattern. Our
concept of roles captures the associations between objects in a pattern by specifying
references that originate or terminate at that object. As in our system, the role of an
object in [70] changes over time, and an objects can play multiple roles simultaneously,
which corresponds to our partial roles. Our role system ensures the conformance of
these design concepts with the actual implementation, improving the reliability of
the application. In the database programming language Fibonacci [35, 3] each object
plays multiple roles simultaneously. The interface of an object depends on the role
through which the object is accessed. This is in contrast to our role system where the
role is a structural property of an object. As in most other database implementations,
the system [3] checks the inclusion and cardinality constraints on associations at run-
time, unlike our static analysis.

7.3 Shape Analysis

The precision of our role analysis for tracking references between heap objects is
closest to the precision of the shape analysis and verification techniques such as [78,
32, 54, 36]. Whereas these systems focus on analyzing a single data structure, our
goal is to analyze interactions between multiple data structures. This is reflected in
our choice of the properties to analyze. In particular, the slot constraints tracked by
our role analysis are a natural generalization of the sharing predicate in [78] and can
be used both to refine the descriptions of data structure nodes and to specify the
membership of objects in multiple data structures.

Shape Types [32] is a system for ensuring that the program heap conforms to a
context-free graph grammar [27, 73]. As a graph description formalism, context-free
graph grammars are incomparable to roles. On the one hand, graph grammars can-
not describe an approximation of sparse matrices or specify participation of objects
in multiple data structures. On the other hand, the nonparametrized role system
presented in this thesis does not include constraints such as “a node must have a self
loop”. We could express such constraints using roles parametrized by objects. The
problem of temporary violations of heap invariants is circumvented in [32] by using
high-level graph rewrite rules called reactions [30] as part of the implementation lan-
guage. The model [32] does not support nested reactions on the same data structure
or procedure calls from reactions. In contrast, the model of onstage and offstage
nodes can be directly applied to a Java-like language, and gives more flexibility to
the programmer because roles can be violated in one part of data structure while
invoking a procedure on disjoint part of the same data structure. There is no sup-
port for procedure specifications in [32]. While simple procedures might be described
precisely as reactions, for larger procedures it is necessary to use approximations to
keep procedure summaries concise. Our system achieves this goal by using effects as
nodeterministic procedure specifications that enable compositional interprocedural
analysis.

Graph types and the pointer assertion logic [54, 52, 64] are heap invariant descrip-

82



www.manaraa.com

tion languages based on monadic second-order logic [85, 17, 55]. In these systems,
each graph type data structure must be represented as a spanning tree with addi-
tional pointer fields [64] constrained to denote exactly one target node. If a data
structure is expressible in this way, the system [64] can verify strong properties about
it, an example is manipulation of a threaded tree. Because of constraints on pointer
fields, however, it is not possible to approximate data structures such as trees with a
pointer to the last accessed leaf, skip lists, or sparse matrices. This restriction also
makes it impossible to describe objects that move between data structures while being
members of multiple data structures simultaneously. The moving objects cannot be
made part of any backbone because their membership in data structures changes over
time. The verification of programs in [64] is based on loop invariants. This makes the
technique naturally modular and hence no special mechanism is needed for interpro-
cedural analysis. Because the logic is second order, the effects of the procedure can
be specified by referring to the sets of nodes affected by the procedure. The problem
with this approach is the complexity of loop invariants that describe the intermediate
referencing relationships. In contrast, our role analysis uses fixpoint computation to
effectively infer loop invariants in the form of sets of role graphs and uses procedures
as a unit of a compositional interprocedural analysis.

Like shape analysis techniques [12, 36, 77, 78], we have adopted a constraint-based
approach for describing the heap. The constraint based approach allows us to handle
a wider range of data structures while potentially giving up some precision.

The path matrix approaches [37, 36] have been used to implement efficient in-
terprocedural analyses that infer one level of referencing relationships, but are not
sufficiently precise to track must aliases of heap objects for programs with destructive
updates of more complex data structures.

The ADDS data structure description language [49] uses declarations of unique
pointers and independent data structure dimensions to communicate data structures
invariants. Later systems [50, 45] replace these constraints with reachability axioms.
None of these systems has a concept of a role which depends on aliasing of an object
from other objects. These systems use sound techniques to apply the data structure
invariants for parallelization and general dependence testing but do not verify that
the data structure invariants are preserved by destructive updates of data structures
[48].

The use of the instantiation relation in role analysis is analogous to the material-
ization operation of [77, 78]. The shape analysis [77, 78] uses abstract interpretation
[18] to compute the invariants that the program satisfies at each program point. The
values of invariants are stored as 3-valued models for the user-supplied instrumen-
tation predicates. In contrast, our analysis representation is designed to verify a
particular role programming model with onstage and offstage nodes. Role graphs use
“may” interpretation of edges for offstage nodes and “must” interpretation of edges
adjacent to onstage nodes. The abstraction relation is based on graph homomorphism
and it is not necessarily a function, so there is no unique best abstract transformer
as in the abstract interpretation frameworks. Our role analysis can thus create the
summary nodes with different reachability predicates on demand, depending on the
behavior of the program. Next, the possibility of having multiple role assignments
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with static analysis based on the instrumented semantics allows us to capture certain
properties of objects that depend not only on the current state of the heap but also
on the computation history. Reachability properties in our role analysis are derived
from the role graph instead of being explicitly stored as instrumentation predicates.
The advantage of our approach is that it naturally handles a class of reachability
predicates, without requiring predicate update formulae. Our approach thus avoids
the danger of a developer supplying incorrect predicate update formulae and thereby
compromising the soundness of the analysis. A disadvantage of our approach is that
it does not give must reachability information for paths containing several types of
fields where nodes have multiple aliases from those fields. The reason why we can
recover reachability for e.g. tree-like data structures is that the slot constraint in a
role which labels a summary node guarantees the existence of the parent for each
node in the path. Our role analysis handles acyclicity by using roles to store the
acyclicity assumptions for nodes in recursive data structures. Acyclicity assumptions
are instantiated using the the split operation. Our split operation achieves a similar
goal to the focus operation of [78]. However, the generic focus algorithm of [60] cannot
handle the reachability predicate which is needed for our split operation. This is be-
cause it conservatively refuses to focus on edges between two summary nodes to avoid
generating an infinite number of structures. Rather than requiring definite values for
reachability predicate, our role analysis splits according to reachability properties in
the abstract role graph, which illustrates the flexibility of the homomorphism-based
abstraction relation.

Type inference algorithms for dynamically typed functional languages [2, 10] have
the ability to statically approximate the values of types in higher order languages.
These systems usually work with purely functional subsets of functional languages
and do not consider the issues of aliasing.

7.4 Interprocedural Analyses

A precise interprocedural analysis [72] extends the shape analysis techniques to treat
activation records as dynamically allocated structures. The approach also effectively
synthesizes an application-specific set of contexts. Our approach differs in that it
uses a less precise but more scalable treatment of procedures. It also uses a compo-
sitional approach that analyzes each procedure once to verify that it conforms to its
specification.

Interprocedural context-sensitive pointer analyses [90, 38, 13] typically compute
points-to relationships by caching generated contexts and using fixpoint computation
inside strongly connected components of the call graph. Because our analysis tracks
more detailed information about the heap, we have chosen to make it compositional
at the level of procedures. Our analysis achieves compositionality using procedure
effects, which are also useful documentation for the procedure. Like [92] our interpro-
cedural analysis can apply both may and must effects, but our contexts are general
graphs with summary nodes and not trees.

The system [43] introduces an annotation language for optimizing libraries. The
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language describes procedure interfaces which enable optimization of programs that
use matrix operations. The supplied function annotations are not verified for the
conformance with procedure implementations. In contrast, our goal is to analyze
linked data structures to verify heap invariants; it is therefore essential that our role
analysis uses sound techniques for both effect verification and effect instantiation.

Our effects are more specific and precise than effects in [53]; as a result they are
not commutative. Both verification and instantiation of our effects require specific
techniques that precisely keep track of the correspondence between the initial heap
of a procedure and the heap at each program point. Our effect application rules
implement a form of effect masking. If there are no write effects with the NEW as
a target and the source other than NEW, the role graphs in the caller will not be
affected.

7.5 Program Verification

We can view our role analysis as one component of a general program verification
system. The role analysis conservatively attempts to establish a specific class of heap
invariants, but does not track other program properties. Verifying data structure
invariants is important because the knowledge of these invariants is crucial for rea-
soning about the behavior of programs with dynamically allocated data structures,
which is generally considered difficult. The difficulty of reasoning with dynamically
allocated data structures is indicated by some existing systems that verify properties
of interfaces but lack automatic verification of conformance between interface and im-
plementation [42], and systems that give up soundness [28, 21]. Advances in reasoning
about linked data structures [71, 51] might be a useful starting point for verification
tools, although efficient manipulation of properties in verification tools results in dif-
ferent representation requirements than manual reasoning. A combination of model
checking [47] and sound automatic model extraction [5] might be an appropriate im-
plementation technique for verifying program properties, but the applicability of this
approach for verifying heap invariants remains to be proven.
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Chapter 8

Conclusion

We proposed two key ideas: aliasing relationships should determine, in large part,
the state of each object, and the type system should use the resulting object states as
its fundamental abstraction for describing procedure interfaces and object referenc-
ing relationships. We presented a role system that realizes these two key ideas, and
described an analysis algorithm that can verify that the program correctly respects
the constraints of this role system. The result is that programmers can use roles for
a variety of purposes: to ensure the correctness of extended procedure interfaces that
take the roles of parameters into account, to verify important data structure consis-
tency properties, to express how procedures move objects between data structures,
and to check that the program correctly implements correlated relationships between
the states of multiple objects. We therefore expect roles to improve the reliability
of the program and its transparency to developers and maintainers. By ensuring
that the program conforms to the design constraints expressed in role definitions,
role analysis makes design information available to the compilation framework. This
enables a range of high-level program transformations such as automatic distribution,
parallelization, and memory management.
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Appendix A

Decidability Properties of Roles

This chapter presents some further results about properties of roles. The first sec-
tion proves decidability of the satisfiability problem for roles with only field and slot
constraints. The second section proves undecidability of the implication problem for
roles.

A.1 Roles with Field and Slot Constraints

In this section we closely examine more closely properties of roles defined using solely
field and slot constraints. We ignore identity and acyclicity constraints in this and
the following section.

We show that we can use more general form of slot constraints without changing
the expressive power of roles. We then show how the generalized slot constraints
can entirely replace the field constraints, which means that these constraints are not
strictly necessary once the full set of role definitions is given. Finally we show decid-
ability of the satisfaction problem for a set of roles containing only slot constraints.

A.1.1 Forms of Slot Constraints

The particular form of our slot constraints introduced in Section 2.1.2 may seem some-
what arbitrary. In this section we introduce a more general form of slot constraints
and show that it can be reduced to our original role constraints. This observation
gives insight into the nature of slot constraints and is used in further sections.

Definition 49 A generalized slot constraint for role r, denoted gslot(r), is a list
c1, . . . , cn of incoming configurations. Each incoming configuration cs is a list of
pairs 〈rs1, fs1〉, . . . , 〈rsqs , fsqs〉 ∈ R× F where qs is the length of cs.

By abuse of notation, we write 〈rj, fj〉 ∈ cs if 〈rj, fj〉 is a member of the list cs where
cs represents the incoming configuration.

In addition to the role assignment ρc : nodes(Hc) → R, we introduce an incoming
configuration assignment ν : nodes(Hc) → N . For each node o, the incoming config-
uration assignment selects an incoming configuration cν(o) of the the role ρc(o). The
local consistency is then defined as follows.
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Definition 50 locallyConsistent(o,Hc, ρc, ν) holds for generalized roles iff the follow-
ing conditions are met. Let r = ρc(o).

1) For every field f ∈ F and 〈o, f, o′〉 ∈ Hc, ρc(o
′) ∈ fieldf (r).

2) Let {〈o1, f1〉, . . . , 〈ok, fk〉} = {〈o′, f〉 | 〈o′, f, o〉 ∈ Hc} be the set of all aliases of
node o and s = ν(o). Then k = qs and there exists a permutation p of the set
{1, . . . , k} such that 〈ρc(opi

), fpi
〉 = 〈rsi, fsi〉 for 1 ≤ i ≤ k where 〈rsi, fsi〉 is the

i-the element of the list in incoming configuration cs.

We say that the pair 〈ρc, ν〉 of role assignment and incoming configuration assignment
is valid for Hc iff locallyConsistent predicate holds for all nodes o ∈ nodes(Hc); the
heap Hc is consistent if there exists a valid pair 〈ρc, ν〉. A nonempty heap consistent
with a given set of role definition is called a model for the role definitions.

A.1.2 Equivalence of Original and Generalized Slots

Our original slot constraints sloti(r) for 1 ≤ i ≤ k where k = slotno(r) can be
represented as generalized slot constraints with a list of all incoming configurations
c = 〈r1, f1〉, . . . , 〈rk, fk〉 for 〈ri, fi〉 ∈ sloti(r), 1 ≤ i ≤ k. This representation is a
direct consequence of Definitions 50 and 2.

Conversely, given a set of role definitions with generalized slots, we can construct
a set of role definitions with original slots as follows. Introduce a role r/c for each
incoming configuration c of role r with generalized slot constraint. Let origRoles(r)
denote the set of new roles r/c for all incoming configurations c of r. Define field and
slot constraints for r/c as follows:

fieldf (r/c) =
⋃{origRoles(r′) | r′ ∈ fieldf (r)}

sloti(r/c) = {〈ri/c
′, fi〉 | c′ is an incoming configuration of ri}

where c = 〈r1, f1〉, . . . , 〈rk, fk〉. Let role assignment ρc assign roles with general-
ized slots to objects and ν be the incoming configuration assignment such that
locallyConsistent predicate holds for all heap objects. Define the assignment of original
roles by

ρ′c(o) = ρc(o)/ν(o)

Then locallyConsistent predicate holds for the ρ′c assigning original roles to objects.
We will use the generalized role constraints to establish the decidability of the

satisfiability problem. We first show how to eliminate field constraints.

A.1.3 Eliminating Field Constraints

In this section we argue that the field constraints are mostly subsumed by slot con-
straints if the entire set of role definitions is given. The constraint r′ /∈ fieldf (r) can
be specified as 〈r, f〉 /∈ sloti(r

′) for all slots i in the original slot constraints. In the
generalized slot constraints this conditions is specified by making sure that 〈r, f〉 is
not a member of any of the incoming configurations c of role r′. In order to allow this
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construction to work for null references, we introduce multislot declaration for nullR
role by defining 〈r, f〉 ∈ multislots(nullR) iff nullR ∈ fieldf (r).

After this transformation, the field declarations will be satisfied whenever (gener-
alized) slot constraints and nullR multislot constraint are satisfied. In the sequel we
therefore ignore the field constraints.

A.1.4 Decidability of the Satisfiability Problem

In this section we show that is is decidable to determine if a given set of role definitions
(containing only field and slot constraints) has a model. We show how to reduce this
question to the solvability of an integer linear programming problem.

Assume a set of role definitions for roles R = {r1, . . . , rn}. Let Hc be a concrete
heap, ρc a role assignment and ν an incoming configuration assignment. Define the
following nonnegative integer variables. For every i, where 1 ≤ i ≤ n, let xi be the
number of nodes with role ri:

xi = |{o ∈ nodes(Hc) | ρ(o) = ri}|

Let yjs be the number of nodes with role ρc(rj) for which ν selects the incoming
configuration cs:

yjs = |{o ∈ nodes(Hc) | ρ(o) = rj, ν(o) = cs}|

We also introduce the values nfi denoting the number of null references from objects
with role ri along the field f :

nfi = |{〈o, f, null〉 ∈ Hc | ρc(o) = ri}|

Assume that locallyConsistent predicate holds for all objects o ∈ nodes(Hc). By
partitioning the set of objects first by roles and then by incoming configurations of
each role, we conclude that the following equations hold for 1 ≤ j ≤ n:

qj∑

s=1

yjs = xj (A.1)

Next, let us count for each role ri and each field f ∈ F , the number of f -references
from objects in ρ−1

c (ri). We assumed that each object has the field f , so counting
the source of these references yields xi. Out of these, nfi are null references, and
the remaining ones fill the slots of objects with incoming configurations that contain
〈ri, f〉. We conclude that for each f ∈ F and 1 ≤ i ≤ n the following linear equation
holds:

xi = nfi +
∑

〈ri,f〉∈cs

yjs (A.2)

Finally, for all 〈ri, f〉 /∈ multislots(nullR), we have

nfi = 0 (A.3)
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We call equations A.1, A.2, and A.3 the characteristic equations of role constraints.

We concluded that characteristic equations hold for each valid role and incoming
configuration assignment. We now argue that a nontrivial solution of these equations
implies the existence of a heap Hc, the role assignment ρc and incoming configuration
assignment ν such that locallyConsistent predicate is satisfied for all objects of the
heap.

Assume that there is a nontrivial solution of the characteristic equations. Con-
struct a heap Hc with N nodes where N =

∑
i=1 xi. Partition the nodes of the heap

into n classes and assign ρc(o) = ri for nodes in class i, such that the definition of
xi is satisfied for every i. This is possible by the choice of N . Next, partition each
class ρ−1

c (ri) into disjoint sets, one set for each incoming configuration, and assign
ν(o) = cs such that the definitions of yjs are satisfied. This is always possible because
equation A.1 holds. Next, add edges to graph Hc so that slot constraints are satisfied.
This can be done by a simple greedy algorithm which adds one edge at a time so that
it does not violate any slot constraints. This construction is guaranteed to succeed
because of equation A.2. The condition A.3 guarantees that the resulting graph null
references will be present only for the fields for which they are allowed. The result is
a heap Hc consistent with the role definitions.

The next theorem follows directly from the previous argument and the decidability
of the integer linear programming problem.

Theorem 51 It is decidable to determine if there exists a model for a given set of
role definitions.

In addition to showing the decidability, the preceding argument also illustrates
that slot and field constraints are insensitive to graph operations that switch the
source of a reference from object o1 to object o2, as long as ρc(o1) = ρc(o2). This
implies that certain heap properties are not expressible using slot and field constraints
alone. In particular, slot constraints do not prevent cycles, which justifies introducing
the acyclicity constraints into the role framework.

A.2 Undecidability of Model Inclusion

In this section we explore the decidability of the question “is the set of models of one
set of role definitions S1 included in the set of models of another set of role definitions
S2”. This appears to be a more difficult problem than satisfiability of role definitions.
Indeed, we proved in Section A.1.4 that the satisfiability is decidable for a restricted
class of role definitions; in this section we prove that the model inclusion problem is
undecidable for acyclic models.

Our role specifications are interpreted with respect to graphs which need not be
trees and can even contain cycles. It can therefore be expected that strong enough
properties are undecidable for such broad class of models. A common technique to
prove undecidability for problems on general graphs is to consider the class of graphs
called grids.
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We define a grid as a labelled graph with edges x along the x-axis and edges y
along the y axis.

Definition 52 A grid m × n where m,n ≥ 5 is any graph isomorphic to the graph
with nodes

V = {1, . . . , m} × {1, . . . , n}
and edges E = Er ∪ Ed where

Ex = {〈〈i, j〉, x, 〈i + j, j〉〉 | 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n}

Ey = {〈〈i, j〉, y, 〈i, j + 1〉〉 | 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1}
The idea is to reduce the existence of a Turing machine computation history [81, 67]
to the problem on graphs considered. The rules for computation history are local
and thus can be expressed using slots and fields. However, it is not possible to use
roles to directly express the condition that a graph is a grid. The problem is that the
commutativity condition o.x.y = o.y.x for grids cannot be captured using our role
constraints, as the following reasoning shows.

Assume that there are role definitions which describe the class of grids. Since
grids do not have any identities 〈f, g〉, we may assume that these role definitions
do not contain identity declarations. Because the number of roles and incoming
configurations is finite, there exists a sufficiently large grid E, a valid role assignment
ρc and a valid incoming configuration assignment ν such that for some i, j where
2 < i < j, all of the following conditions hold:

ρc(〈i, 2〉) = ρc(〈j, 2〉)
ρc(〈i, 3〉) = ρc(〈j, 3〉)
ν(〈i, 2〉) = ν(〈j, 2〉)
ν(〈i, 2〉) = ν(〈j, 2〉)

Define a new graph E ′ in the following way (see Figure A-1).

E ′ = (E \ {〈〈i, 2〉, x, 〈i, 3〉〉, 〈〈j, 2〉, x, 〈j, 3〉〉})
∪ {〈〈i, 2〉, x, 〈j, 3〉〉, 〈〈j, 2〉, x, 〈i, 3〉〉}

We claim that the new graph E ′ also satisfies the same role and incoming configuration
assignment. To see this, observe that the field and slot constraints remain satisfied
because the new edges connect nodes with same roles as in E, there are no identities
in role definitions, and the graph remains acyclic so acyclicity conditions cannot be
violated. But E ′ is not isomorphic to a grid, because every isomorphism would have
to be identity function on node 〈1, 1〉, and therefore also identity on all nodes 〈1, i〉
for i > 1. Next, since y-edges in E ′ are the same as in E, the isomorphism would
have to be identity function on all nodes, and this is not possible due to the change
performed in the set of x-edges. We conclude there is no set of role definitions that
captures the class of grids.
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Figure A-1: A Grid after Role Preserving Modification

The idea of our undecidability construction is to use one set of role definitions S1

to approximate the grid up to the commutativity condition o.x.y = o.y.x as well as
to encode the transitions of a Turing machine. We then use the another set of role
definitions S2 to express the negation of the commutativity condition. The models of
S1 are not included in models of S2 if and only if there exists a model for S1 which is
not a model of S2. Any such model will have to be a grid because it satisfies S1 but
not S2, and the roles of S1 will encode the accepting Turing machine computation
history. Hence the question whether such a model exists will be equivalent to the
existence of an accepting Turing machine computation history and the undecidability
of model inclusion will follow from the undecidability of the halting problem.

Let us first consider how S1 and S2 define the grid used to encode the computation
histories. Without the loss of generality, we restrict ourselves to models that are
connected graphs. We define S1 to be a refinement of the definition for a sparse
matrix from Example 3, Figure 2-1. From properties in Section 2.3 we conclude that
the connected models of E are graphs for which there exist m,n ≥ 3 such that:

1. there is exactly one node A1, one node A3, one node A7 and one node A9;

2. there are m− 2 nodes A2 (by the choice of m);

3. there are m − 2 nodes A8 because the acyclic lists along y establish bijection
with A2 nodes;

4. there are n− 2 nodes A4 (by the choice of n);

5. there are n − 2 nodes A6 because the acyclic lists along x establish bijection
with A4 nodes;
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6. there are at least max(m − 2, n − 2) nodes A5 (but not necessarily more than
that).

P Q

R
T

S

x

x

y y

Figure A-2: Roles that Force Violation of the Commutativity Condition

The idea of role definitions S2 is that if a graph satisfying S1 is not a grid, then
there must exist a node o such that o.x.y 6= o.y.x, which means that o.x.y and o.y.x
can be assigned distinct roles. We construct S2 to require the existence of five distinct
objects o, o.x, o.y, o.x.y and o.y.x with with five distinct roles P , Q, R, and T (see
Figure A-2). We require Q to be referenced from P.x, R to be referenced from P.y,
T from Q.y and S from R.x. In addition to these five roles, we include the roles that
ensure that are assigned to the remaining nodes of a graph. We construct these roles
to ensure that every model of S2 contains an object of P role, relying on Property 12.

Finally, we explain how to encode the existence of an accepting Turing machine
computation history in the set of role definitions S1. Let M be a Turing machine and
w any input. We use the fact that the computation history of M on input w can be
represented as a matrix, and represent the matrix as a grid. Each row of the matrix
represents configuration of the Turing machine encoded as a sequence of symbols.
Because all Turing machine transitions change the tape locally, there is a finite set
W1, . . . ,Wk of 3×2 tiles of symbols that characterize the matrix in the following way.
We call a 3 × 2 window in a the matrix acceptable if it matches a tile. We use the
fact [81] that a matrix represents a computation history of M iff

every 3× 2 window in the matrix is acceptable (A.4)

The condition A.4 can be split into six conditions C11, C12, C13, C21, C22, C23 where
C ij ensures that every 3 × 2 window is acceptable if it starts at (i1, j1) where i1 ≡ i
(mod 3) and j1 ≡ j (mod 3). Let each tile Wt consist of symbols a11

t , a12
t , a13

t , a21
t ,

a22
t , a23

t .
The set of role definitions S1 is similar to roles in Example 3 except that it splits

the role A5 into multiple roles. Each new role of S1 is a sixtuple of positions (ts, is, js),
where 1 ≤ s ≤ 6, such that ai1j1

t1 = ai2j2
t2 = . . . = ai6j6

t6 . Each position (ts, is, js) in the
role sixtuple ensures that one of the conditions Cij is satisfied where s = 3(i− 1)+ j,
using the slot constraints. Along the x field, if j > 1, a role with position (t, i, j)
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as k-th projection can have only aliases from roles with position (t, i, j − 1) as k-th
projection. If j = 1, the aliases can be from roles with (t′, i, 3) as the k-th projection.
Analogous slot constraints are defined for y fields.

An accepting computation history of the Turing machine M exists iff there exists
a matrix where all 3× 2 windows are valid which in turn holds iff there exists a grid
which satisfied the constraints given by role definitions S1. A graph which satisfies
role definitions S1 is a grid iff it does not satisfy the role definitions S2; such graph
exists iff the models of S1 are not included in models of S2. Hence an accepting
computation history of the Turing machine M exists iff the models of S1 are not
included in the models of S2. Since the first question is undecidable, so is the model
inclusion question.
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